体内
微透析
体外
化学
药理学
生物化学
医学
细胞外
生物
生物技术
作者
Yumei Wu,Xunan Song,Dereje Kebebe,Xinyue Li,Zhifeng Xue,Jia Li,Shouying Du,Jiaxin Pi,Zhidong Liu
标识
DOI:10.1016/j.ijpharm.2019.118754
摘要
In order to deliver Salvianolic acid B (Sal B) and Baicalin (BA) to the brain tissue to repair neuron damage and improve cerebral ischemia-reperfusion injury (IRI), in our previous study, a nanostructured lipid carrier (NLC) containing BA and Sal B, and modified by the transferrin receptor monoclonal antibody OX26 (OX26-BA/Sal B-NLC) was constructed. The present study is to evaluate its in vitro release behavior, in vitro and in vivo targeting ability, in vitro pharmacodynamics and brain pharmacokinetics. The results showed that the release mechanism of the formulation was in line with the Weibull model release equation. The in-vitro and in-vivo targeting ability study exhibited that OX26 modified formulations was obviously higher than that of non-modified and solution groups. The results of in vitro preliminary study to investigate the protective effect of OX26-BA/Sal B-NLC on oxygen-glucose deprivation/reperfusion injured cells showed that it could decrease the injury. Furthermore, the results of brain microdialysis study showed that the OX26-modified preparation group could significantly increase the content of BA in the brain. In the solution group and the unmodified group, Sal B can only be detected at few time points, while OX26-modified BA/Sal B-NLC could be detected within 4 h. These results indicating that OX26-modified NLC can promote the brain delivery of Sal B and BA combination.
科研通智能强力驱动
Strongly Powered by AbleSci AI