Rotating Machinery Fault Diagnosis Based on Improved Multiscale Amplitude-Aware Permutation Entropy and Multiclass Relevance Vector Machine

振动 特征提取 计算机科学 算法 支持向量机 模式识别(心理学) 熵(时间箭头) 断层(地质) 故障检测与隔离 人工智能 特征向量 振幅 工程类 声学 执行机构 地质学 物理 量子力学 地震学
作者
Yinsheng Chen,Tinghao Zhang,Wenjie Zhao,Zhongming Luo,Haijun Lin
出处
期刊:Sensors [MDPI AG]
卷期号:19 (20): 4542-4542 被引量:20
标识
DOI:10.3390/s19204542
摘要

The health state of rotating machinery directly affects the overall performance of the mechanical system. The monitoring of the operation condition is very important to reduce the downtime and improve the production efficiency. This paper presents a novel rotating machinery fault diagnosis method based on the improved multiscale amplitude-aware permutation entropy (IMAAPE) and the multiclass relevance vector machine (mRVM) to provide the necessary information for maintenance decisions. Once the fault occurs, the vibration amplitude and frequency of rotating machinery obviously changes and therefore, the vibration signal contains a considerable amount of fault information. In order to effectively extract the fault features from the vibration signals, the intrinsic time-scale decomposition (ITD) was used to highlight the fault characteristics of the vibration signal by extracting the optimum proper rotation (PR) component. Subsequently, the IMAAPE was utilized to realize the fault feature extraction from the PR component. In the IMAAPE algorithm, the coarse-graining procedures in the multi-scale analysis were improved and the stability of fault feature extraction was promoted. The coarse-grained time series of vibration signals at different time scales were firstly obtained, and the sensitivity of the amplitude-aware permutation entropy (AAPE) to signal amplitude and frequency was adopted to realize the fault feature extraction of coarse-grained time series. The multi-classifier based on the mRVM was established by the fault feature set to identify the fault type and analyze the fault severity of rotating machinery. In order to demonstrate the effectiveness and feasibility of the proposed method, the experimental datasets of the rolling bearing and gearbox were used to verify the proposed fault diagnosis method respectively. The experimental results show that the proposed method can be applied to the fault type identification and the fault severity analysis of rotating machinery with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
PHY关闭了PHY文献求助
刚刚
guoguoguo发布了新的文献求助10
1秒前
糯yyt完成签到,获得积分20
1秒前
1秒前
箴言完成签到,获得积分20
1秒前
Jimmy_King完成签到 ,获得积分10
2秒前
闫雨涵完成签到,获得积分10
2秒前
2秒前
2秒前
郭囯完成签到,获得积分10
3秒前
枯叶蝶完成签到,获得积分10
3秒前
3秒前
4秒前
李宝莲完成签到,获得积分20
4秒前
April_550发布了新的文献求助30
4秒前
yh完成签到,获得积分10
4秒前
stg完成签到,获得积分10
4秒前
lingjing发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
123发布了新的文献求助10
6秒前
许樟林完成签到,获得积分10
6秒前
科研黑猫完成签到,获得积分10
7秒前
lll发布了新的文献求助10
8秒前
8秒前
小糊涂神发布了新的文献求助10
9秒前
9秒前
10秒前
传奇3应助杆杆采纳,获得10
10秒前
10秒前
笨小孩完成签到,获得积分10
10秒前
汤汤杨杨完成签到,获得积分10
11秒前
11秒前
11秒前
bean完成签到,获得积分20
11秒前
CodeCraft应助炙热猎豹采纳,获得10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614862
求助须知:如何正确求助?哪些是违规求助? 4699807
关于积分的说明 14905197
捐赠科研通 4740557
什么是DOI,文献DOI怎么找? 2547802
邀请新用户注册赠送积分活动 1511593
关于科研通互助平台的介绍 1473715