Rotating Machinery Fault Diagnosis Based on Improved Multiscale Amplitude-Aware Permutation Entropy and Multiclass Relevance Vector Machine

振动 特征提取 计算机科学 算法 支持向量机 模式识别(心理学) 熵(时间箭头) 断层(地质) 故障检测与隔离 人工智能 特征向量 振幅 工程类 声学 执行机构 地质学 物理 量子力学 地震学
作者
Yinsheng Chen,Tinghao Zhang,Wenjie Zhao,Zhongming Luo,Haijun Lin
出处
期刊:Sensors [MDPI AG]
卷期号:19 (20): 4542-4542 被引量:20
标识
DOI:10.3390/s19204542
摘要

The health state of rotating machinery directly affects the overall performance of the mechanical system. The monitoring of the operation condition is very important to reduce the downtime and improve the production efficiency. This paper presents a novel rotating machinery fault diagnosis method based on the improved multiscale amplitude-aware permutation entropy (IMAAPE) and the multiclass relevance vector machine (mRVM) to provide the necessary information for maintenance decisions. Once the fault occurs, the vibration amplitude and frequency of rotating machinery obviously changes and therefore, the vibration signal contains a considerable amount of fault information. In order to effectively extract the fault features from the vibration signals, the intrinsic time-scale decomposition (ITD) was used to highlight the fault characteristics of the vibration signal by extracting the optimum proper rotation (PR) component. Subsequently, the IMAAPE was utilized to realize the fault feature extraction from the PR component. In the IMAAPE algorithm, the coarse-graining procedures in the multi-scale analysis were improved and the stability of fault feature extraction was promoted. The coarse-grained time series of vibration signals at different time scales were firstly obtained, and the sensitivity of the amplitude-aware permutation entropy (AAPE) to signal amplitude and frequency was adopted to realize the fault feature extraction of coarse-grained time series. The multi-classifier based on the mRVM was established by the fault feature set to identify the fault type and analyze the fault severity of rotating machinery. In order to demonstrate the effectiveness and feasibility of the proposed method, the experimental datasets of the rolling bearing and gearbox were used to verify the proposed fault diagnosis method respectively. The experimental results show that the proposed method can be applied to the fault type identification and the fault severity analysis of rotating machinery with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
scimaker发布了新的文献求助10
1秒前
1秒前
light发布了新的文献求助10
2秒前
细腻的山水完成签到 ,获得积分10
2秒前
孙嘉畯完成签到 ,获得积分10
3秒前
3秒前
润润轩轩发布了新的文献求助10
4秒前
4秒前
糖葫芦完成签到,获得积分10
4秒前
4秒前
香蕉觅云应助wgl200212采纳,获得10
4秒前
5秒前
陈陈陈完成签到,获得积分10
5秒前
5秒前
李健应助不是二次元采纳,获得10
5秒前
6秒前
坚强煜城完成签到,获得积分10
6秒前
赘婿应助眯眯眼采纳,获得10
6秒前
李健应助pooh采纳,获得10
6秒前
桐桐应助light采纳,获得10
7秒前
LeeChanmn发布了新的文献求助10
7秒前
852应助小迷糊采纳,获得10
7秒前
Minus完成签到,获得积分10
7秒前
左囧完成签到,获得积分10
7秒前
阿浩完成签到,获得积分10
9秒前
张小哥12发布了新的文献求助30
9秒前
9秒前
合适绮完成签到,获得积分10
9秒前
9秒前
酸菜余完成签到,获得积分10
9秒前
科目三应助争取少吃点采纳,获得10
9秒前
10秒前
NoGtime发布了新的文献求助10
10秒前
坚强煜城发布了新的文献求助10
10秒前
Cassie发布了新的文献求助20
10秒前
大个应助可靠的冰萍采纳,获得10
11秒前
11秒前
imao发布了新的文献求助10
12秒前
风清扬应助Jiayou Zhang采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505532
求助须知:如何正确求助?哪些是违规求助? 4601172
关于积分的说明 14475722
捐赠科研通 4535228
什么是DOI,文献DOI怎么找? 2485237
邀请新用户注册赠送积分活动 1468262
关于科研通互助平台的介绍 1440718