Rotating Machinery Fault Diagnosis Based on Improved Multiscale Amplitude-Aware Permutation Entropy and Multiclass Relevance Vector Machine

振动 特征提取 计算机科学 算法 支持向量机 模式识别(心理学) 熵(时间箭头) 断层(地质) 故障检测与隔离 人工智能 特征向量 振幅 工程类 声学 执行机构 量子力学 物理 地质学 地震学
作者
Yinsheng Chen,Tinghao Zhang,Wenjie Zhao,Zhongming Luo,Haijun Lin
出处
期刊:Sensors [MDPI AG]
卷期号:19 (20): 4542-4542 被引量:20
标识
DOI:10.3390/s19204542
摘要

The health state of rotating machinery directly affects the overall performance of the mechanical system. The monitoring of the operation condition is very important to reduce the downtime and improve the production efficiency. This paper presents a novel rotating machinery fault diagnosis method based on the improved multiscale amplitude-aware permutation entropy (IMAAPE) and the multiclass relevance vector machine (mRVM) to provide the necessary information for maintenance decisions. Once the fault occurs, the vibration amplitude and frequency of rotating machinery obviously changes and therefore, the vibration signal contains a considerable amount of fault information. In order to effectively extract the fault features from the vibration signals, the intrinsic time-scale decomposition (ITD) was used to highlight the fault characteristics of the vibration signal by extracting the optimum proper rotation (PR) component. Subsequently, the IMAAPE was utilized to realize the fault feature extraction from the PR component. In the IMAAPE algorithm, the coarse-graining procedures in the multi-scale analysis were improved and the stability of fault feature extraction was promoted. The coarse-grained time series of vibration signals at different time scales were firstly obtained, and the sensitivity of the amplitude-aware permutation entropy (AAPE) to signal amplitude and frequency was adopted to realize the fault feature extraction of coarse-grained time series. The multi-classifier based on the mRVM was established by the fault feature set to identify the fault type and analyze the fault severity of rotating machinery. In order to demonstrate the effectiveness and feasibility of the proposed method, the experimental datasets of the rolling bearing and gearbox were used to verify the proposed fault diagnosis method respectively. The experimental results show that the proposed method can be applied to the fault type identification and the fault severity analysis of rotating machinery with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油完成签到,获得积分20
1秒前
随机子应助欣喜的香彤采纳,获得10
1秒前
调皮便当完成签到,获得积分10
1秒前
万万完成签到,获得积分20
2秒前
慕青应助美好灵寒采纳,获得10
2秒前
Persist6578完成签到 ,获得积分10
2秒前
3秒前
4秒前
4秒前
鲤鱼依白完成签到 ,获得积分10
4秒前
4秒前
gr完成签到,获得积分10
4秒前
拼搏城完成签到,获得积分20
5秒前
爱读文献关注了科研通微信公众号
5秒前
贾晨鹤发布了新的文献求助10
7秒前
万万发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
sidegate应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
它山凡溪寺完成签到 ,获得积分10
8秒前
sidegate应助科研通管家采纳,获得10
8秒前
8秒前
无辜砖头应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
几酌应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
8秒前
清风荷影完成签到 ,获得积分10
8秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816187
关于积分的说明 7911845
捐赠科研通 2475930
什么是DOI,文献DOI怎么找? 1318423
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388