Rotating Machinery Fault Diagnosis Based on Improved Multiscale Amplitude-Aware Permutation Entropy and Multiclass Relevance Vector Machine

振动 特征提取 计算机科学 算法 支持向量机 模式识别(心理学) 熵(时间箭头) 断层(地质) 故障检测与隔离 人工智能 特征向量 振幅 工程类 声学 执行机构 地质学 物理 量子力学 地震学
作者
Yinsheng Chen,Tinghao Zhang,Wenjie Zhao,Zhongming Luo,Haijun Lin
出处
期刊:Sensors [MDPI AG]
卷期号:19 (20): 4542-4542 被引量:20
标识
DOI:10.3390/s19204542
摘要

The health state of rotating machinery directly affects the overall performance of the mechanical system. The monitoring of the operation condition is very important to reduce the downtime and improve the production efficiency. This paper presents a novel rotating machinery fault diagnosis method based on the improved multiscale amplitude-aware permutation entropy (IMAAPE) and the multiclass relevance vector machine (mRVM) to provide the necessary information for maintenance decisions. Once the fault occurs, the vibration amplitude and frequency of rotating machinery obviously changes and therefore, the vibration signal contains a considerable amount of fault information. In order to effectively extract the fault features from the vibration signals, the intrinsic time-scale decomposition (ITD) was used to highlight the fault characteristics of the vibration signal by extracting the optimum proper rotation (PR) component. Subsequently, the IMAAPE was utilized to realize the fault feature extraction from the PR component. In the IMAAPE algorithm, the coarse-graining procedures in the multi-scale analysis were improved and the stability of fault feature extraction was promoted. The coarse-grained time series of vibration signals at different time scales were firstly obtained, and the sensitivity of the amplitude-aware permutation entropy (AAPE) to signal amplitude and frequency was adopted to realize the fault feature extraction of coarse-grained time series. The multi-classifier based on the mRVM was established by the fault feature set to identify the fault type and analyze the fault severity of rotating machinery. In order to demonstrate the effectiveness and feasibility of the proposed method, the experimental datasets of the rolling bearing and gearbox were used to verify the proposed fault diagnosis method respectively. The experimental results show that the proposed method can be applied to the fault type identification and the fault severity analysis of rotating machinery with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
echo发布了新的文献求助10
1秒前
1秒前
3秒前
肥奇力应助shaangu623采纳,获得30
4秒前
5秒前
crazy完成签到,获得积分10
5秒前
5秒前
今天你读文献了吗完成签到,获得积分10
6秒前
优雅灵波完成签到,获得积分10
7秒前
8秒前
仁爱的冰夏完成签到,获得积分10
8秒前
Pearl发布了新的文献求助10
8秒前
echo完成签到,获得积分10
10秒前
10秒前
grzzz完成签到,获得积分10
11秒前
ttyhtg完成签到,获得积分10
11秒前
蔷薇发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
Lyuhng+1完成签到 ,获得积分10
14秒前
无极微光应助henry采纳,获得20
15秒前
勤恳的德地完成签到,获得积分10
15秒前
凯瑞发布了新的文献求助10
16秒前
优雅灵波发布了新的文献求助10
17秒前
17秒前
17秒前
666完成签到,获得积分10
18秒前
江伊完成签到,获得积分10
18秒前
追寻梦松完成签到,获得积分10
20秒前
甜甜的平文完成签到 ,获得积分10
22秒前
大树完成签到 ,获得积分10
22秒前
Aurora发布了新的文献求助10
23秒前
无极微光应助江伊采纳,获得20
23秒前
23秒前
ye发布了新的文献求助20
24秒前
ayumi完成签到,获得积分10
25秒前
完美世界应助健壮的映之采纳,获得10
25秒前
11发布了新的文献求助10
27秒前
心理可达鸭完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600729
求助须知:如何正确求助?哪些是违规求助? 4686290
关于积分的说明 14842868
捐赠科研通 4677642
什么是DOI,文献DOI怎么找? 2538917
邀请新用户注册赠送积分活动 1505884
关于科研通互助平台的介绍 1471229