Rotating Machinery Fault Diagnosis Based on Improved Multiscale Amplitude-Aware Permutation Entropy and Multiclass Relevance Vector Machine

振动 特征提取 计算机科学 算法 支持向量机 模式识别(心理学) 熵(时间箭头) 断层(地质) 故障检测与隔离 人工智能 特征向量 振幅 工程类 声学 执行机构 地质学 物理 量子力学 地震学
作者
Yinsheng Chen,Tinghao Zhang,Wenjie Zhao,Zhongming Luo,Haijun Lin
出处
期刊:Sensors [MDPI AG]
卷期号:19 (20): 4542-4542 被引量:20
标识
DOI:10.3390/s19204542
摘要

The health state of rotating machinery directly affects the overall performance of the mechanical system. The monitoring of the operation condition is very important to reduce the downtime and improve the production efficiency. This paper presents a novel rotating machinery fault diagnosis method based on the improved multiscale amplitude-aware permutation entropy (IMAAPE) and the multiclass relevance vector machine (mRVM) to provide the necessary information for maintenance decisions. Once the fault occurs, the vibration amplitude and frequency of rotating machinery obviously changes and therefore, the vibration signal contains a considerable amount of fault information. In order to effectively extract the fault features from the vibration signals, the intrinsic time-scale decomposition (ITD) was used to highlight the fault characteristics of the vibration signal by extracting the optimum proper rotation (PR) component. Subsequently, the IMAAPE was utilized to realize the fault feature extraction from the PR component. In the IMAAPE algorithm, the coarse-graining procedures in the multi-scale analysis were improved and the stability of fault feature extraction was promoted. The coarse-grained time series of vibration signals at different time scales were firstly obtained, and the sensitivity of the amplitude-aware permutation entropy (AAPE) to signal amplitude and frequency was adopted to realize the fault feature extraction of coarse-grained time series. The multi-classifier based on the mRVM was established by the fault feature set to identify the fault type and analyze the fault severity of rotating machinery. In order to demonstrate the effectiveness and feasibility of the proposed method, the experimental datasets of the rolling bearing and gearbox were used to verify the proposed fault diagnosis method respectively. The experimental results show that the proposed method can be applied to the fault type identification and the fault severity analysis of rotating machinery with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助结构采纳,获得30
刚刚
李健应助fancy采纳,获得10
1秒前
3秒前
3秒前
4秒前
激流勇进wb完成签到 ,获得积分10
4秒前
芷卉发布了新的文献求助10
4秒前
xie发布了新的文献求助10
5秒前
ding应助蝴蝶变成毛毛虫采纳,获得10
6秒前
cz发布了新的文献求助10
6秒前
lijshu给lijshu的求助进行了留言
6秒前
6秒前
Aurora完成签到,获得积分10
7秒前
朱朱珠珠应助海晨采纳,获得10
8秒前
8秒前
心灵美的大地完成签到,获得积分10
8秒前
9秒前
黑夜的冰之歌完成签到,获得积分10
10秒前
10秒前
connieGZ完成签到,获得积分10
10秒前
Aurora发布了新的文献求助10
10秒前
Paper发布了新的文献求助10
11秒前
11秒前
xie完成签到,获得积分10
11秒前
快乐的便当完成签到 ,获得积分10
12秒前
12秒前
rainhowk完成签到,获得积分10
12秒前
13秒前
我是老大应助愉快尔烟采纳,获得10
13秒前
ren发布了新的文献求助10
14秒前
14秒前
14秒前
元谷雪发布了新的文献求助10
15秒前
15秒前
大瓜给NianWan的求助进行了留言
15秒前
蒋蒋蒋发布了新的文献求助10
15秒前
connieGZ发布了新的文献求助10
15秒前
15秒前
1816013153发布了新的文献求助30
15秒前
Mic完成签到,获得积分0
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571571
求助须知:如何正确求助?哪些是违规求助? 4656806
关于积分的说明 14717928
捐赠科研通 4597626
什么是DOI,文献DOI怎么找? 2523291
邀请新用户注册赠送积分活动 1494143
关于科研通互助平台的介绍 1464280