亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rotating Machinery Fault Diagnosis Based on Improved Multiscale Amplitude-Aware Permutation Entropy and Multiclass Relevance Vector Machine

振动 特征提取 计算机科学 算法 支持向量机 模式识别(心理学) 熵(时间箭头) 断层(地质) 故障检测与隔离 人工智能 特征向量 振幅 工程类 声学 执行机构 地质学 物理 量子力学 地震学
作者
Yinsheng Chen,Tinghao Zhang,Wenjie Zhao,Zhongming Luo,Haijun Lin
出处
期刊:Sensors [MDPI AG]
卷期号:19 (20): 4542-4542 被引量:20
标识
DOI:10.3390/s19204542
摘要

The health state of rotating machinery directly affects the overall performance of the mechanical system. The monitoring of the operation condition is very important to reduce the downtime and improve the production efficiency. This paper presents a novel rotating machinery fault diagnosis method based on the improved multiscale amplitude-aware permutation entropy (IMAAPE) and the multiclass relevance vector machine (mRVM) to provide the necessary information for maintenance decisions. Once the fault occurs, the vibration amplitude and frequency of rotating machinery obviously changes and therefore, the vibration signal contains a considerable amount of fault information. In order to effectively extract the fault features from the vibration signals, the intrinsic time-scale decomposition (ITD) was used to highlight the fault characteristics of the vibration signal by extracting the optimum proper rotation (PR) component. Subsequently, the IMAAPE was utilized to realize the fault feature extraction from the PR component. In the IMAAPE algorithm, the coarse-graining procedures in the multi-scale analysis were improved and the stability of fault feature extraction was promoted. The coarse-grained time series of vibration signals at different time scales were firstly obtained, and the sensitivity of the amplitude-aware permutation entropy (AAPE) to signal amplitude and frequency was adopted to realize the fault feature extraction of coarse-grained time series. The multi-classifier based on the mRVM was established by the fault feature set to identify the fault type and analyze the fault severity of rotating machinery. In order to demonstrate the effectiveness and feasibility of the proposed method, the experimental datasets of the rolling bearing and gearbox were used to verify the proposed fault diagnosis method respectively. The experimental results show that the proposed method can be applied to the fault type identification and the fault severity analysis of rotating machinery with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
陈小子完成签到 ,获得积分10
3秒前
烂漫靖柏完成签到 ,获得积分10
3秒前
4秒前
ANKAR发布了新的文献求助10
8秒前
8秒前
还单身的晓夏关注了科研通微信公众号
9秒前
trophozoite完成签到 ,获得积分10
9秒前
活力的觅荷完成签到,获得积分20
10秒前
10秒前
11秒前
jyy应助ANKAR采纳,获得10
16秒前
上官若男应助活力的觅荷采纳,获得10
17秒前
okko发布了新的文献求助10
18秒前
峡星牙发布了新的文献求助10
18秒前
19秒前
Zz完成签到,获得积分10
19秒前
okko完成签到,获得积分10
25秒前
26秒前
26秒前
ANKAR完成签到,获得积分10
26秒前
Akaza完成签到 ,获得积分10
26秒前
峡星牙完成签到,获得积分10
28秒前
jml完成签到,获得积分10
29秒前
36秒前
追光者完成签到,获得积分10
38秒前
40秒前
42秒前
重要的夜玉完成签到 ,获得积分10
47秒前
ggg完成签到 ,获得积分10
58秒前
Thanks完成签到 ,获得积分10
58秒前
1分钟前
枯荣完成签到 ,获得积分10
1分钟前
summer不吃蛋黄完成签到 ,获得积分10
1分钟前
1分钟前
小钰完成签到,获得积分10
1分钟前
1分钟前
NexusExplorer应助HE采纳,获得10
1分钟前
浅忆完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714155
求助须知:如何正确求助?哪些是违规求助? 5221116
关于积分的说明 15272841
捐赠科研通 4865689
什么是DOI,文献DOI怎么找? 2612277
邀请新用户注册赠送积分活动 1562440
关于科研通互助平台的介绍 1519639