亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rotating Machinery Fault Diagnosis Based on Improved Multiscale Amplitude-Aware Permutation Entropy and Multiclass Relevance Vector Machine

振动 特征提取 计算机科学 算法 支持向量机 模式识别(心理学) 熵(时间箭头) 断层(地质) 故障检测与隔离 人工智能 特征向量 振幅 工程类 声学 执行机构 地质学 物理 量子力学 地震学
作者
Yinsheng Chen,Tinghao Zhang,Wenjie Zhao,Zhongming Luo,Haijun Lin
出处
期刊:Sensors [MDPI AG]
卷期号:19 (20): 4542-4542 被引量:20
标识
DOI:10.3390/s19204542
摘要

The health state of rotating machinery directly affects the overall performance of the mechanical system. The monitoring of the operation condition is very important to reduce the downtime and improve the production efficiency. This paper presents a novel rotating machinery fault diagnosis method based on the improved multiscale amplitude-aware permutation entropy (IMAAPE) and the multiclass relevance vector machine (mRVM) to provide the necessary information for maintenance decisions. Once the fault occurs, the vibration amplitude and frequency of rotating machinery obviously changes and therefore, the vibration signal contains a considerable amount of fault information. In order to effectively extract the fault features from the vibration signals, the intrinsic time-scale decomposition (ITD) was used to highlight the fault characteristics of the vibration signal by extracting the optimum proper rotation (PR) component. Subsequently, the IMAAPE was utilized to realize the fault feature extraction from the PR component. In the IMAAPE algorithm, the coarse-graining procedures in the multi-scale analysis were improved and the stability of fault feature extraction was promoted. The coarse-grained time series of vibration signals at different time scales were firstly obtained, and the sensitivity of the amplitude-aware permutation entropy (AAPE) to signal amplitude and frequency was adopted to realize the fault feature extraction of coarse-grained time series. The multi-classifier based on the mRVM was established by the fault feature set to identify the fault type and analyze the fault severity of rotating machinery. In order to demonstrate the effectiveness and feasibility of the proposed method, the experimental datasets of the rolling bearing and gearbox were used to verify the proposed fault diagnosis method respectively. The experimental results show that the proposed method can be applied to the fault type identification and the fault severity analysis of rotating machinery with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
AgAin发布了新的文献求助10
2秒前
烟花应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
纪震宇完成签到,获得积分10
4秒前
舒服的聪健完成签到 ,获得积分10
6秒前
Banbanyou完成签到,获得积分10
7秒前
平常的羊完成签到 ,获得积分10
10秒前
大意的以菱完成签到,获得积分10
12秒前
山药汤完成签到,获得积分10
12秒前
clelo完成签到 ,获得积分10
28秒前
健忘涟妖完成签到,获得积分10
29秒前
长的帅完成签到,获得积分10
29秒前
小江不饿完成签到,获得积分10
32秒前
Ye应助贝贝采纳,获得10
33秒前
桐桐应助点点采纳,获得10
35秒前
yinjs158完成签到,获得积分10
37秒前
37秒前
xinyang完成签到 ,获得积分10
41秒前
44秒前
46秒前
大模型应助壮观复天采纳,获得10
49秒前
风中谷南发布了新的文献求助10
51秒前
112222完成签到 ,获得积分10
53秒前
点点发布了新的文献求助10
53秒前
momo102610完成签到,获得积分10
1分钟前
清欢完成签到 ,获得积分10
1分钟前
Lina完成签到,获得积分10
1分钟前
科研通AI6.1应助独特微笑采纳,获得100
1分钟前
隐形曼青应助yunshui采纳,获得10
1分钟前
rrjl完成签到,获得积分10
1分钟前
杰尼龟的鱼完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787957
求助须知:如何正确求助?哪些是违规求助? 5703228
关于积分的说明 15473130
捐赠科研通 4916169
什么是DOI,文献DOI怎么找? 2646223
邀请新用户注册赠送积分活动 1593876
关于科研通互助平台的介绍 1548209