亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rotating Machinery Fault Diagnosis Based on Improved Multiscale Amplitude-Aware Permutation Entropy and Multiclass Relevance Vector Machine

振动 特征提取 计算机科学 算法 支持向量机 模式识别(心理学) 熵(时间箭头) 断层(地质) 故障检测与隔离 人工智能 特征向量 振幅 工程类 声学 执行机构 地质学 物理 量子力学 地震学
作者
Yinsheng Chen,Tinghao Zhang,Wenjie Zhao,Zhongming Luo,Haijun Lin
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:19 (20): 4542-4542 被引量:20
标识
DOI:10.3390/s19204542
摘要

The health state of rotating machinery directly affects the overall performance of the mechanical system. The monitoring of the operation condition is very important to reduce the downtime and improve the production efficiency. This paper presents a novel rotating machinery fault diagnosis method based on the improved multiscale amplitude-aware permutation entropy (IMAAPE) and the multiclass relevance vector machine (mRVM) to provide the necessary information for maintenance decisions. Once the fault occurs, the vibration amplitude and frequency of rotating machinery obviously changes and therefore, the vibration signal contains a considerable amount of fault information. In order to effectively extract the fault features from the vibration signals, the intrinsic time-scale decomposition (ITD) was used to highlight the fault characteristics of the vibration signal by extracting the optimum proper rotation (PR) component. Subsequently, the IMAAPE was utilized to realize the fault feature extraction from the PR component. In the IMAAPE algorithm, the coarse-graining procedures in the multi-scale analysis were improved and the stability of fault feature extraction was promoted. The coarse-grained time series of vibration signals at different time scales were firstly obtained, and the sensitivity of the amplitude-aware permutation entropy (AAPE) to signal amplitude and frequency was adopted to realize the fault feature extraction of coarse-grained time series. The multi-classifier based on the mRVM was established by the fault feature set to identify the fault type and analyze the fault severity of rotating machinery. In order to demonstrate the effectiveness and feasibility of the proposed method, the experimental datasets of the rolling bearing and gearbox were used to verify the proposed fault diagnosis method respectively. The experimental results show that the proposed method can be applied to the fault type identification and the fault severity analysis of rotating machinery with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixuebin完成签到 ,获得积分10
1秒前
CAOHOU应助xingsixs采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
ww发布了新的文献求助100
29秒前
52秒前
ww发布了新的文献求助10
52秒前
顺利的尔芙完成签到,获得积分10
57秒前
毓雅完成签到,获得积分10
1分钟前
小马甲应助顺利的尔芙采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
ww发布了新的文献求助10
2分钟前
ww发布了新的文献求助100
2分钟前
xingsixs完成签到 ,获得积分10
2分钟前
2分钟前
九零后无心完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
lin.xy完成签到,获得积分10
3分钟前
ww发布了新的文献求助10
3分钟前
ww发布了新的文献求助10
3分钟前
al完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
ww发布了新的文献求助10
4分钟前
ww发布了新的文献求助10
4分钟前
4分钟前
4分钟前
依霏发布了新的文献求助10
4分钟前
4分钟前
shenglue发布了新的文献求助10
4分钟前
丘比特应助依霏采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
rrrrrrry发布了新的文献求助20
5分钟前
ww发布了新的文献求助20
5分钟前
岁和景明完成签到 ,获得积分10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015088
求助须知:如何正确求助?哪些是违规求助? 3555039
关于积分的说明 11317842
捐赠科研通 3288546
什么是DOI,文献DOI怎么找? 1812266
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983