Analyzing Medical Guideline Dissemination Behaviors Using Culturally Infused Agent Based Modeling Framework

指南 标准化 计算机科学 信息传播 激励 传播 知识管理 管理科学 医疗保健 数据科学 风险分析(工程) 医学 工程类 病理 经济 微观经济学 经济增长 万维网 操作系统 电信
作者
Eunice E. Santos,John Korah,Suresh Subramanian,Vairavan Murugappan,Elbert S. Huang,Neda Laiteerapong,Ali Çınar
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 2137-2149 被引量:6
标识
DOI:10.1109/jbhi.2021.3052809
摘要

Clinical practice guidelines are a critical medium for the standardization of practices within the overall medical community. However, several studies have shown that, in general, there is a significant delay in the adoption of recommendations in such guidelines. Surveys have identified multiple barriers, including clinical inertia, organizational culture/incentives, access to information and peer influence on guideline dissemination and adoption. Although modeling techniques, especially agent-based models, have shown promise, a rigorous computational model for guideline dissemination that incorporates the intricacies of medical decision making and interactions of healthcare workers, and can identify more effective dissemination strategies, is needed. Similar modeling and simulation issues are also prevalent in many other domains such as opinion diffusion, innovation, and technology adoption. In this paper, we introduce a novel overarching computational modeling and simulation framework called the Culturally Infused Agent Based Modeling (CI-ABM) Framework. CI-ABM is a generalizable framework that provides the capability to model a wide range of real-world complex scenarios. To validate the framework, we focus on modeling and analyzing the dissemination of a Type 2 diabetes guideline that recommends individualizing glycemic (A1C) goals. Using existing cross-sectional surveys from physicians across the US, we demonstrate how our methodology for incorporating various socio-cultural and other related factors in agent based models lead to better posterior probability-based analysis and prediction of guideline dissemination behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助gavincsu采纳,获得10
刚刚
李健应助TT采纳,获得10
1秒前
善学以致用应助韭黄采纳,获得10
1秒前
刘一安完成签到 ,获得积分10
1秒前
我的miemie完成签到,获得积分10
1秒前
最最最完成签到,获得积分20
1秒前
清爽雪枫完成签到,获得积分10
1秒前
本杰明发布了新的文献求助30
1秒前
杳鸢应助欢呼的棒棒糖采纳,获得10
2秒前
2秒前
2秒前
2秒前
YHX9910完成签到,获得积分10
2秒前
在水一方应助郑小七采纳,获得10
2秒前
玉崟发布了新的文献求助10
3秒前
3秒前
刘旭阳完成签到,获得积分10
3秒前
3秒前
3秒前
星星泡饭完成签到,获得积分10
4秒前
4秒前
4秒前
King16完成签到,获得积分10
4秒前
4秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
jmy完成签到,获得积分10
5秒前
Leif应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
积极的板栗完成签到 ,获得积分10
5秒前
咯咚完成签到 ,获得积分10
5秒前
ding应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759