Analyzing Medical Guideline Dissemination Behaviors Using Culturally Infused Agent Based Modeling Framework

指南 标准化 计算机科学 信息传播 激励 传播 知识管理 管理科学 医疗保健 数据科学 风险分析(工程) 医学 工程类 病理 经济 微观经济学 经济增长 万维网 操作系统 电信
作者
Eunice E. Santos,John Korah,Suresh Subramanian,Vairavan Murugappan,Elbert S. Huang,Neda Laiteerapong,Ali Çınar
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 2137-2149 被引量:6
标识
DOI:10.1109/jbhi.2021.3052809
摘要

Clinical practice guidelines are a critical medium for the standardization of practices within the overall medical community. However, several studies have shown that, in general, there is a significant delay in the adoption of recommendations in such guidelines. Surveys have identified multiple barriers, including clinical inertia, organizational culture/incentives, access to information and peer influence on guideline dissemination and adoption. Although modeling techniques, especially agent-based models, have shown promise, a rigorous computational model for guideline dissemination that incorporates the intricacies of medical decision making and interactions of healthcare workers, and can identify more effective dissemination strategies, is needed. Similar modeling and simulation issues are also prevalent in many other domains such as opinion diffusion, innovation, and technology adoption. In this paper, we introduce a novel overarching computational modeling and simulation framework called the Culturally Infused Agent Based Modeling (CI-ABM) Framework. CI-ABM is a generalizable framework that provides the capability to model a wide range of real-world complex scenarios. To validate the framework, we focus on modeling and analyzing the dissemination of a Type 2 diabetes guideline that recommends individualizing glycemic (A1C) goals. Using existing cross-sectional surveys from physicians across the US, we demonstrate how our methodology for incorporating various socio-cultural and other related factors in agent based models lead to better posterior probability-based analysis and prediction of guideline dissemination behaviors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薄荷发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
领导范儿应助lll采纳,获得10
1秒前
Lucas应助今天没有哭鸭采纳,获得10
1秒前
Guess完成签到,获得积分10
2秒前
3秒前
3秒前
青山发布了新的文献求助10
4秒前
郭莹莹发布了新的文献求助10
4秒前
勤奋凡之完成签到,获得积分10
5秒前
猪猪侠应助薄荷采纳,获得10
6秒前
脑司机完成签到,获得积分10
7秒前
HOAN应助洋芋采纳,获得20
7秒前
7秒前
111完成签到,获得积分10
7秒前
shenghao完成签到,获得积分10
7秒前
充电宝应助可燃冰采纳,获得10
7秒前
HYK完成签到,获得积分10
7秒前
7秒前
十是十完成签到,获得积分20
8秒前
灵巧的十八完成签到,获得积分10
8秒前
9秒前
111发布了新的文献求助10
10秒前
xiaojiu完成签到,获得积分10
10秒前
子凯发布了新的文献求助10
11秒前
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
华仔应助喜悦的迎波采纳,获得10
11秒前
冷艳的班应助科研通管家采纳,获得10
11秒前
埋头赶路应助科研通管家采纳,获得10
11秒前
zhonglv7应助科研通管家采纳,获得10
12秒前
annabelle应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得20
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得30
12秒前
ding应助科研通管家采纳,获得30
12秒前
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
埋头赶路应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956