已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

True ultra-low-dose amyloid PET/MRI enhanced with deep learning for clinical interpretation

医学 核医学 正电子发射断层摄影术 Pet成像 淀粉样蛋白(真菌学) 医学物理学 放射科 病理
作者
Kevin T. Chen,Tyler Toueg,Mary Ellen I. Koran,Guido Davidzon,Michael Zeineh,Dawn Holley,Harsh Gandhi,Kim Halbert,Athanasia Boumis,Gabriel Kennedy,Elizabeth C. Mormino,Mehdi Khalighi,Greg Zaharchuk
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:48 (8): 2416-2425 被引量:34
标识
DOI:10.1007/s00259-020-05151-9
摘要

While sampled or short-frame realizations have shown the potential power of deep learning to reduce radiation dose for PET images, evidence in true injected ultra-low-dose cases is lacking. Therefore, we evaluated deep learning enhancement using a significantly reduced injected radiotracer protocol for amyloid PET/MRI. Eighteen participants underwent two separate 18F-florbetaben PET/MRI studies in which an ultra-low-dose (6.64 ± 3.57 MBq, 2.2 ± 1.3% of standard) or a standard-dose (300 ± 14 MBq) was injected. The PET counts from the standard-dose list-mode data were also undersampled to approximate an ultra-low-dose session. A pre-trained convolutional neural network was fine-tuned using MR images and either the injected or sampled ultra-low-dose PET as inputs. Image quality of the enhanced images was evaluated using three metrics (peak signal-to-noise ratio, structural similarity, and root mean square error), as well as the coefficient of variation (CV) for regional standard uptake value ratios (SUVRs). Mean cerebral uptake was correlated across image types to assess the validity of the sampled realizations. To judge clinical performance, four trained readers scored image quality on a five-point scale (using 15% non-inferiority limits for proportion of studies rated 3 or better) and classified cases into amyloid-positive and negative studies. The deep learning–enhanced PET images showed marked improvement on all quality metrics compared with the low-dose images as well as having generally similar regional CVs as the standard-dose. All enhanced images were non-inferior to their standard-dose counterparts. Accuracy for amyloid status was high (97.2% and 91.7% for images enhanced from injected and sampled ultra-low-dose data, respectively) which was similar to intra-reader reproducibility of standard-dose images (98.6%). Deep learning methods can synthesize diagnostic-quality PET images from ultra-low injected dose simultaneous PET/MRI data, demonstrating the general validity of sampled realizations and the potential to reduce dose significantly for amyloid imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yayazz完成签到,获得积分10
2秒前
jeff完成签到,获得积分10
3秒前
keep1997发布了新的文献求助10
3秒前
LuoYR@SZU发布了新的文献求助10
3秒前
动听书雁完成签到,获得积分10
7秒前
Akim应助微笑的冥幽采纳,获得10
7秒前
12秒前
珊瑚蛇关注了科研通微信公众号
15秒前
1234完成签到 ,获得积分10
15秒前
丰富曼青完成签到,获得积分10
18秒前
CodeCraft应助怕孤独的鞋垫采纳,获得10
18秒前
义气幼珊完成签到 ,获得积分10
22秒前
24秒前
阿飞完成签到,获得积分10
25秒前
bkagyin应助Sanqainli采纳,获得10
27秒前
欣慰问凝发布了新的文献求助10
35秒前
夏末完成签到 ,获得积分10
36秒前
DaisyChan完成签到 ,获得积分10
36秒前
rio完成签到 ,获得积分10
36秒前
hsvxvk完成签到 ,获得积分10
38秒前
LuoYR@SZU完成签到,获得积分10
49秒前
在水一方应助keep1997采纳,获得10
52秒前
喵咪西西完成签到 ,获得积分10
53秒前
丰富曼青发布了新的文献求助50
54秒前
追寻紫安应助夏末采纳,获得30
56秒前
58秒前
1分钟前
温暖眼神完成签到,获得积分10
1分钟前
1分钟前
Sanqainli发布了新的文献求助10
1分钟前
哭泣的丝完成签到 ,获得积分10
1分钟前
晨曦发布了新的文献求助20
1分钟前
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
李健的小迷弟应助zhvjdb采纳,获得10
1分钟前
1分钟前
Owen应助zz采纳,获得10
1分钟前
我是老大应助哈哈Hank采纳,获得10
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139400
求助须知:如何正确求助?哪些是违规求助? 2790323
关于积分的说明 7794903
捐赠科研通 2446762
什么是DOI,文献DOI怎么找? 1301366
科研通“疑难数据库(出版商)”最低求助积分说明 626153
版权声明 601141