The present study describes a special lipid-polyethylene glycol matrix solid lipid nanoparticles (SLNs; 138 nm; -2.07 mV) for ocular delivery. Success of this matrix to encapsulate (entrapment efficiency - 62.09%) a hydrophilic drug, fluconazole (FCZ-SLNs), with no burst release (67% release in 24 h) usually observed with most water-soluble drugs, is described presently. The system showed 164.64% higher flux than the marketed drops (Zocon®) through porcine cornea. Encapsulation within SLNs and slow release did not compromise efficacy of FCZ-SLNs. Latter showed in vitro and in vivo antifungal effects, including antibiofilm effects comparable to free FCZ solution. Developed system was safe and stable (even to sterilisation by autoclaving); and showed optimal viscosity, refractive index and osmotic pressure. These SLNs could reach up to retina following application as drops. The mechanism of transport via corneal and non-corneal transcellular pathways is described by fluorescent and TEM images of mice eye cross sections. Particles streamed through the vitreous, crossed inner limiting membrane and reached the outer retinal layers.