Complex solid solution (CSS) (often denoted as high-entropy alloy) electrocatalysts enable access to unique possibilities for tailoring active sites while overcoming ever-existing limitations in electrocatalysis by unique interactions of various elements in direct neighborhood. The challenge lies in the development of strategies, which allow for systematic design of element combination and composition optimization in the multinary composition space. This challenge is accompanied by a lack of a suitable analysis method of experimental activity measurements, which can cope with the complex surface structure of this catalyst class. In this work, we propose the advantageous use of inflection points of voltammetric activity curves as activity descriptors enabling to correlate the potential of individual surface site groups to the respective peaks in the adsorption energy distribution pattern. This concept allows to methodologically gather information about the importance of each element in a CSS with respect to activity and stability of the relevant active sites and provides the basis for a guideline for systematic composition optimization. Further, the effect of phase stability on specific surface site groups as induced by degradation of the CSS phase or oxidation can be monitored. These concepts are experimentally evaluated using Cr–Mn–Fe–Co–Ni as a model system. Nanoparticles are synthesized with systematically varied compositions by means of scalable laser ablation synthesis using a multinary target. The composition is optimized with respect to the electrocatalytic activity for the oxygen reduction reaction (ORR) by varying its Mn content via laser ablation synthesis in ethanol. Subsequently, the concept is applied using rotating disk electrodes for ORR analysis in alkaline media.