清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios

强化学习 机器人 避碰 稳健性(进化) 计算机科学 人工智能 一般化 分布式计算 碰撞 计算机安全 数学 生物化学 基因 数学分析 化学
作者
Tingxiang Fan,Pinxin Long,Wenxi Liu,Jia Pan
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:39 (7): 856-892 被引量:219
标识
DOI:10.1177/0278364920916531
摘要

Developing a safe and efficient collision-avoidance policy for multiple robots is challenging in the decentralized scenarios where each robot generates its paths with limited observation of other robots’ states and intentions. Prior distributed multi-robot collision-avoidance systems often require frequent inter-robot communication or agent-level features to plan a local collision-free action, which is not robust and computationally prohibitive. In addition, the performance of these methods is not comparable with their centralized counterparts in practice. In this article, we present a decentralized sensor-level collision-avoidance policy for multi-robot systems, which shows promising results in practical applications. In particular, our policy directly maps raw sensor measurements to an agent’s steering commands in terms of the movement velocity. As a first step toward reducing the performance gap between decentralized and centralized methods, we present a multi-scenario multi-stage training framework to learn an optimal policy. The policy is trained over a large number of robots in rich, complex environments simultaneously using a policy-gradient-based reinforcement-learning algorithm. The learning algorithm is also integrated into a hybrid control framework to further improve the policy’s robustness and effectiveness. We validate the learned sensor-level collision-3avoidance policy in a variety of simulated and real-world scenarios with thorough performance evaluations for large-scale multi-robot systems. The generalization of the learned policy is verified in a set of unseen scenarios including the navigation of a group of heterogeneous robots and a large-scale scenario with 100 robots. Although the policy is trained using simulation data only, we have successfully deployed it on physical robots with shapes and dynamics characteristics that are different from the simulated agents, in order to demonstrate the controller’s robustness against the simulation-to-real modeling error. Finally, we show that the collision-avoidance policy learned from multi-robot navigation tasks provides an excellent solution for safe and effective autonomous navigation for a single robot working in a dense real human crowd. Our learned policy enables a robot to make effective progress in a crowd without getting stuck. More importantly, the policy has been successfully deployed on different types of physical robot platforms without tedious parameter tuning. Videos are available at https://sites.google.com/view/hybridmrca .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
10秒前
18秒前
量子星尘发布了新的文献求助10
23秒前
shyの煜完成签到 ,获得积分10
26秒前
28秒前
30秒前
量子星尘发布了新的文献求助10
40秒前
42秒前
56秒前
量子星尘发布了新的文献求助10
57秒前
所得皆所愿完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Dieubium发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
紫熊发布了新的文献求助30
1分钟前
muriel完成签到,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
Xulun发布了新的文献求助10
2分钟前
山猫大王完成签到 ,获得积分10
2分钟前
2分钟前
charih完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Xulun完成签到,获得积分10
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661079
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744081
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538