亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mobile-Unet: An efficient convolutional neural network for fabric defect detection

Softmax函数 计算机科学 人工智能 分割 深度学习 卷积神经网络 特征(语言学) 模式识别(心理学) 卷积(计算机科学) 编码器 反褶积 钥匙(锁) 人工神经网络 算法 哲学 语言学 计算机安全 操作系统
作者
Junfeng Jing,Zhen Wang,Matthias Rätsch,Huanhuan Zhang
出处
期刊:Textile Research Journal [SAGE]
卷期号:92 (1-2): 30-42 被引量:286
标识
DOI:10.1177/0040517520928604
摘要

Deep learning–based fabric defect detection methods have been widely investigated to improve production efficiency and product quality. Although deep learning–based methods have proved to be powerful tools for classification and segmentation, some key issues remain to be addressed when applied to real applications. Firstly, the actual fabric production conditions of factories necessitate higher real-time performance of methods. Moreover, fabric defects as abnormal samples are very rare compared with normal samples, which results in data imbalance. It makes model training based on deep learning challenging. To solve these problems, an extremely efficient convolutional neural network, Mobile-Unet, is proposed to achieve the end-to-end defect segmentation. The median frequency balancing loss function is used to overcome the challenge of sample imbalance. Additionally, Mobile-Unet introduces depth-wise separable convolution, which dramatically reduces the complexity cost and model size of the network. It comprises two parts: encoder and decoder. The MobileNetV2 feature extractor is used as the encoder, and then five deconvolution layers are added as the decoder. Finally, the softmax layer is used to generate the segmentation mask. The performance of the proposed model has been evaluated by public fabric datasets and self-built fabric datasets. In comparison with other methods, the experimental results demonstrate that segmentation accuracy and detection speed in the proposed method achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Huzhu发布了新的文献求助20
15秒前
40秒前
44秒前
46秒前
50秒前
zpf发布了新的文献求助10
51秒前
54秒前
58秒前
1分钟前
1分钟前
大熊完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Huzhu应助科研通管家采纳,获得10
1分钟前
Ccccn完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
噜噜晓完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
miaomiao发布了新的文献求助10
3分钟前
3分钟前
3分钟前
George完成签到,获得积分10
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
漂亮夏兰完成签到 ,获得积分10
3分钟前
miaomiao完成签到,获得积分20
3分钟前
咎不可完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
聪明怜阳发布了新的文献求助10
4分钟前
科研通AI6应助WWJ采纳,获得10
4分钟前
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488594
求助须知:如何正确求助?哪些是违规求助? 4587405
关于积分的说明 14413853
捐赠科研通 4518799
什么是DOI,文献DOI怎么找? 2476092
邀请新用户注册赠送积分活动 1461552
关于科研通互助平台的介绍 1434505