Mobile-Unet: An efficient convolutional neural network for fabric defect detection

Softmax函数 计算机科学 人工智能 分割 深度学习 卷积神经网络 特征(语言学) 模式识别(心理学) 卷积(计算机科学) 编码器 反褶积 钥匙(锁) 人工神经网络 算法 语言学 操作系统 哲学 计算机安全
作者
Junfeng Jing,Zhen Wang,Matthias Rätsch,Huanhuan Zhang
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:92 (1-2): 30-42 被引量:231
标识
DOI:10.1177/0040517520928604
摘要

Deep learning–based fabric defect detection methods have been widely investigated to improve production efficiency and product quality. Although deep learning–based methods have proved to be powerful tools for classification and segmentation, some key issues remain to be addressed when applied to real applications. Firstly, the actual fabric production conditions of factories necessitate higher real-time performance of methods. Moreover, fabric defects as abnormal samples are very rare compared with normal samples, which results in data imbalance. It makes model training based on deep learning challenging. To solve these problems, an extremely efficient convolutional neural network, Mobile-Unet, is proposed to achieve the end-to-end defect segmentation. The median frequency balancing loss function is used to overcome the challenge of sample imbalance. Additionally, Mobile-Unet introduces depth-wise separable convolution, which dramatically reduces the complexity cost and model size of the network. It comprises two parts: encoder and decoder. The MobileNetV2 feature extractor is used as the encoder, and then five deconvolution layers are added as the decoder. Finally, the softmax layer is used to generate the segmentation mask. The performance of the proposed model has been evaluated by public fabric datasets and self-built fabric datasets. In comparison with other methods, the experimental results demonstrate that segmentation accuracy and detection speed in the proposed method achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
幸福大白发布了新的文献求助30
1秒前
wsj发布了新的文献求助10
3秒前
ZONG发布了新的文献求助20
3秒前
wuy发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
Jun关闭了Jun文献求助
7秒前
星星发布了新的文献求助10
8秒前
10秒前
射天狼发布了新的文献求助10
10秒前
10秒前
10秒前
zebra8848完成签到,获得积分10
10秒前
11秒前
深情安青应助wsj采纳,获得10
11秒前
11秒前
sxy发布了新的文献求助10
12秒前
蔡从安发布了新的文献求助10
13秒前
14秒前
柔弱云朵完成签到,获得积分10
15秒前
15秒前
15秒前
xxddw发布了新的文献求助10
15秒前
Owen应助小晓采纳,获得10
16秒前
17秒前
17秒前
17秒前
24秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
肖雪依完成签到,获得积分10
25秒前
27秒前
Tink完成签到,获得积分0
27秒前
麦子发布了新的文献求助10
30秒前
星辰大海应助自信鑫鹏采纳,获得10
31秒前
铮铮完成签到,获得积分10
31秒前
Leeie03发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174