Combined Simulation and Experimental Study of Electrolysis Flow Cell for Continuous CO2 Conversion

电解 气体扩散电极 化学工程 电化学 聚合物电解质膜电解 材料科学 无机化学 化学 工程类 电极 电解质 物理化学
作者
Guobin Wen,Bohua Ren,Jeff T. Gostick,Zhongwei Chen
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (36): 1503-1503 被引量:2
标识
DOI:10.1149/ma2020-01361503mtgabs
摘要

Electrochemical carbon dioxide reduction reaction (CO2RR) is a promising strategy to sequester CO 2 while synthesizing valuable chemicals and utilizing intermittent renewable energy supply from solar and wind energy. 1 Electrolysis is often studied in H-cells that are composed of planar electrodes immersed in an aqueous electrolyte, which have severely limited mass transport across the electrolyte and hydrodynamic boundary layer. 2-3 To avoid these limitations alkaline flow cells with a gas diffusion electrode (GDE) operated in a flow-by mode are sometimes used to achieve more realistic conditions. Although they provide higher current densities (CD) and energy efficiencies (EE), they suffer from carbonate salt precipitation in the stagnant pores of the GDE, moreover in KOH electrolyte CO 2 is parasitically converted to bicarbonate. To remedy the latter problem neutral electrolytes, such as K 2 SO 4 or KHCO 3 , can replace alkaline electrolytes, but these have so far demonstrated low EE due to high ohmic resistance and overpotentials in the GDE. In this work we present a flow-through compact membrane electrode assemble (MEA) electrolysis cell for continuous CO2RR, which has following advantages. Firstly, the neutral electrolytes flowed through the porous electrode with carbon in the form of dissolved CO 2 and HCO 3 — . 4 Electrolysis was carried out to produce CO gas and formate ions, which only need to pass through a thin boundary layer with minimized mass transport resistance. The porous electrode was pressed onto the membrane to ensure good ionic conductivity at the electrode−electrolyte interface. Secondly, flowing electrolyte eliminated degradation related to electrolyte flooding and carbonate precipitation. Finally, the overpotential was lowered through catalyst tuning and localized alkaline environment, 5 contributing to cost competitive electroreduction of CO 2 to CO, which exhibited partial current density (PCD CO ) exceeding 150 mA cm −2 at cell overpotentials (|ηcell|) less than 2 V. Reference 1. De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364 (6438). 2. Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C.; de Arquer, F. P. G.; Safaei, T. S.; Mepham, A.; Klinkova, A.; Kumacheva, E.; Filleter, T.; Sinton, D.; Kelley, S. O.; Sargent, E. H., Enhanced electrocatalytic CO 2 reduction via field-induced reagent concentration. Nature 2016, 537 (7620), 382-386. 3. Wen, G.; Lee, D. U.; Ren, B.; Hassan, F. M.; Jiang, G.; Cano, Z. P.; Gostick, J.; Croiset, E.; Bai, Z.; Yang, L.; Chen, Z., Orbital Interactions in Bi-Sn Bimetallic Electrocatalysts for Highly Selective Electrochemical CO 2 Reduction toward Formate Production. Adv. Energy Mater. 2018, 8 (31), 1802427. 4. Weng, L. C.; Bell, A. T.; Weber, A. Z., Modeling gas-diffusion electrodes for CO 2 reduction. Phys Chem Chem Phys 2018, 20 (25), 16973-16984. 5. Verma, S.; Hamasaki, Y.; Kim, C.; Huang, W.; Lu, S.; Jhong, H.-R. M.; Gewirth, A. A.; Fujigaya, T.; Nakashima, N.; Kenis, P. J. A., Insights into the Low Overpotential Electroreduction of CO2 to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer. ACS Energy Letters 2018, 3 (1), 193-198.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助YMY采纳,获得10
刚刚
嘟噜嘟噜应助克偃统统采纳,获得10
刚刚
AJY完成签到,获得积分10
刚刚
1秒前
Evander发布了新的文献求助10
1秒前
DragonFly完成签到,获得积分10
1秒前
2秒前
0808发布了新的文献求助10
2秒前
繁荣的觅儿完成签到,获得积分10
2秒前
2秒前
华仔应助快乐小瑶采纳,获得10
2秒前
wanci应助嘻嘻嘻采纳,获得20
3秒前
wanglong0118发布了新的文献求助10
3秒前
3秒前
lmm123022发布了新的文献求助10
4秒前
朝阳完成签到,获得积分20
4秒前
4秒前
芝芝莓莓完成签到 ,获得积分10
4秒前
可爱的函函应助核桃采纳,获得10
4秒前
大个应助Lux采纳,获得10
4秒前
飞羽发布了新的文献求助10
5秒前
starlight完成签到,获得积分10
5秒前
5秒前
虚心的砖家完成签到,获得积分10
5秒前
eee7完成签到,获得积分10
5秒前
6秒前
malistm发布了新的文献求助30
6秒前
HAHA发布了新的文献求助10
6秒前
wjclear完成签到,获得积分10
7秒前
ding应助wanglong0118采纳,获得10
7秒前
可爱的函函应助缓慢冬天采纳,获得10
8秒前
9秒前
小马甲应助飞羽采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
传奇3应助tianqi采纳,获得10
12秒前
洗衣液谢完成签到 ,获得积分10
13秒前
今后应助wjclear采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420180
求助须知:如何正确求助?哪些是违规求助? 4535297
关于积分的说明 14149461
捐赠科研通 4452280
什么是DOI,文献DOI怎么找? 2442103
邀请新用户注册赠送积分活动 1433615
关于科研通互助平台的介绍 1410869