亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Energy-aware trajectory optimization of CAV platoons through a signalized intersection

弹道 交叉口(航空) 燃料效率 轨迹优化 控制理论(社会学) 最优控制 计算机科学 汽车工程 最优化问题 功能(生物学) 控制(管理) 工程类 数学优化 数学 航空航天工程 算法 人工智能 进化生物学 生物 天文 物理
作者
Xiao Han,Rui Ma,Michael Zhang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:118: 102652-102652 被引量:73
标识
DOI:10.1016/j.trc.2020.102652
摘要

Traffic signals, while serving an important function to coordinate vehicle movements through intersections, also cause frequent stops and delays, particularly when they are not properly timed. Such stops and delays contribute to significant amount of fuel consumption and greenhouse gas emissions. The recent development of connected and automated vehicle (CAV) technology provides new opportunities to enable better control of vehicles and intersections, that in turn reduces fuel consumption and emissions. In this paper, we propose a trajectory optimization method, PTO-GFC, to reduce the total fuel consumption of a CAV platoon through a signalized intersection. In this method, we first apply platoon-trajectory-optimization (PTO) to obtain the optimal trajectories of the platoon vehicles. In PTO, all CAVs in one platoon are considered as a whole, that is, all other CAVs follow the trajectory of the leading one with a time delay and minimum safety gap, which is enabled by vehicle to vehicle communication. Then, we apply gap-feedback-control (GFC) to control the vehicles with different speeds and headways merging into the optimal trajectories. We compare the PTO-GFC method with the other two methods, in which the leading vehicle adopts the optimal trajectory (LTO) or drive with maximum speed (AT), respectively, and the other vehicles follow the leading vehicle with a simplified Gipps’ car-following model. Furthermore, we extend the controls into multiple platoons by considering the interactions between the two platoons. The numerical results demonstrate that PTO-GFC has better performance than LTO and AT, particularly when CAVs have enough space and time to smooth their trajectories. The reduction of travel time and fuel consumption shows the great potential of CAV technology in reducing congestion and negative environmental impact of automobile transportation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Yangpc采纳,获得150
3秒前
若宫伊芙应助舒物采纳,获得10
9秒前
隐形的烧鸭完成签到,获得积分10
21秒前
28秒前
wwdd发布了新的文献求助10
31秒前
keyanxinshou完成签到 ,获得积分10
36秒前
wwdd完成签到,获得积分10
39秒前
泯然完成签到,获得积分10
39秒前
40秒前
沉静的青旋完成签到 ,获得积分10
42秒前
善学以致用应助zh采纳,获得10
48秒前
50秒前
Jane发布了新的文献求助30
57秒前
1分钟前
zhaoeb发布了新的文献求助10
1分钟前
1分钟前
Gryphon完成签到,获得积分20
1分钟前
李冰洋完成签到,获得积分10
1分钟前
李冰洋发布了新的文献求助10
1分钟前
研友_VZG7GZ应助李冰洋采纳,获得10
1分钟前
yyds应助科研通管家采纳,获得100
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得50
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
sam发布了新的文献求助10
1分钟前
顾矜应助yuyu采纳,获得10
1分钟前
sam完成签到,获得积分10
1分钟前
1分钟前
衣裳薄完成签到,获得积分10
1分钟前
ForRITZ发布了新的文献求助10
1分钟前
xingsixs完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
9202211125发布了新的文献求助10
2分钟前
Ethan发布了新的文献求助30
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650677
求助须知:如何正确求助?哪些是违规求助? 4781288
关于积分的说明 15052487
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572338
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487341