亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Energy-aware trajectory optimization of CAV platoons through a signalized intersection

弹道 交叉口(航空) 燃料效率 轨迹优化 控制理论(社会学) 最优控制 计算机科学 汽车工程 最优化问题 功能(生物学) 控制(管理) 工程类 数学优化 数学 航空航天工程 算法 人工智能 进化生物学 生物 天文 物理
作者
Xiao Han,Rui Ma,Michael Zhang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:118: 102652-102652 被引量:73
标识
DOI:10.1016/j.trc.2020.102652
摘要

Traffic signals, while serving an important function to coordinate vehicle movements through intersections, also cause frequent stops and delays, particularly when they are not properly timed. Such stops and delays contribute to significant amount of fuel consumption and greenhouse gas emissions. The recent development of connected and automated vehicle (CAV) technology provides new opportunities to enable better control of vehicles and intersections, that in turn reduces fuel consumption and emissions. In this paper, we propose a trajectory optimization method, PTO-GFC, to reduce the total fuel consumption of a CAV platoon through a signalized intersection. In this method, we first apply platoon-trajectory-optimization (PTO) to obtain the optimal trajectories of the platoon vehicles. In PTO, all CAVs in one platoon are considered as a whole, that is, all other CAVs follow the trajectory of the leading one with a time delay and minimum safety gap, which is enabled by vehicle to vehicle communication. Then, we apply gap-feedback-control (GFC) to control the vehicles with different speeds and headways merging into the optimal trajectories. We compare the PTO-GFC method with the other two methods, in which the leading vehicle adopts the optimal trajectory (LTO) or drive with maximum speed (AT), respectively, and the other vehicles follow the leading vehicle with a simplified Gipps’ car-following model. Furthermore, we extend the controls into multiple platoons by considering the interactions between the two platoons. The numerical results demonstrate that PTO-GFC has better performance than LTO and AT, particularly when CAVs have enough space and time to smooth their trajectories. The reduction of travel time and fuel consumption shows the great potential of CAV technology in reducing congestion and negative environmental impact of automobile transportation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助嘟嘟噜采纳,获得10
2秒前
独享属于自己的风完成签到,获得积分10
5秒前
8秒前
10秒前
44秒前
文艺猫咪发布了新的文献求助10
50秒前
丘比特应助小白果果采纳,获得10
55秒前
Owen应助小白果果采纳,获得10
1分钟前
CodeCraft应助小白果果采纳,获得10
1分钟前
科研通AI5应助加菲宝宝采纳,获得10
1分钟前
2分钟前
lskjdflass发布了新的文献求助10
2分钟前
wanci应助lskjdflass采纳,获得10
2分钟前
2分钟前
supermaltose完成签到,获得积分10
2分钟前
2分钟前
酷波er应助supermaltose采纳,获得10
2分钟前
加菲宝宝发布了新的文献求助10
2分钟前
窦嘉懿完成签到 ,获得积分10
3分钟前
3分钟前
haolichan完成签到,获得积分10
3分钟前
FIN应助HJJHJH采纳,获得30
3分钟前
所所应助HJJHJH采纳,获得10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
彭十八关注了科研通微信公众号
3分钟前
科研通AI5应助加菲宝宝采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
缥缈雍应助三十采纳,获得10
5分钟前
5分钟前
6分钟前
齐齐131发布了新的文献求助10
6分钟前
邋遢大王发布了新的文献求助10
6分钟前
齐齐131完成签到,获得积分20
6分钟前
7分钟前
盐植物应助科研通管家采纳,获得10
7分钟前
Jasper应助科研通管家采纳,获得10
7分钟前
盐植物应助科研通管家采纳,获得10
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555769
求助须知:如何正确求助?哪些是违规求助? 3131382
关于积分的说明 9390950
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556351
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715836