亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Energy-aware trajectory optimization of CAV platoons through a signalized intersection

弹道 交叉口(航空) 燃料效率 轨迹优化 控制理论(社会学) 最优控制 计算机科学 汽车工程 最优化问题 功能(生物学) 控制(管理) 工程类 数学优化 数学 航空航天工程 算法 人工智能 进化生物学 生物 天文 物理
作者
Xiao Han,Rui Ma,Michael Zhang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:118: 102652-102652 被引量:73
标识
DOI:10.1016/j.trc.2020.102652
摘要

Traffic signals, while serving an important function to coordinate vehicle movements through intersections, also cause frequent stops and delays, particularly when they are not properly timed. Such stops and delays contribute to significant amount of fuel consumption and greenhouse gas emissions. The recent development of connected and automated vehicle (CAV) technology provides new opportunities to enable better control of vehicles and intersections, that in turn reduces fuel consumption and emissions. In this paper, we propose a trajectory optimization method, PTO-GFC, to reduce the total fuel consumption of a CAV platoon through a signalized intersection. In this method, we first apply platoon-trajectory-optimization (PTO) to obtain the optimal trajectories of the platoon vehicles. In PTO, all CAVs in one platoon are considered as a whole, that is, all other CAVs follow the trajectory of the leading one with a time delay and minimum safety gap, which is enabled by vehicle to vehicle communication. Then, we apply gap-feedback-control (GFC) to control the vehicles with different speeds and headways merging into the optimal trajectories. We compare the PTO-GFC method with the other two methods, in which the leading vehicle adopts the optimal trajectory (LTO) or drive with maximum speed (AT), respectively, and the other vehicles follow the leading vehicle with a simplified Gipps’ car-following model. Furthermore, we extend the controls into multiple platoons by considering the interactions between the two platoons. The numerical results demonstrate that PTO-GFC has better performance than LTO and AT, particularly when CAVs have enough space and time to smooth their trajectories. The reduction of travel time and fuel consumption shows the great potential of CAV technology in reducing congestion and negative environmental impact of automobile transportation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
hodi完成签到,获得积分10
4秒前
7秒前
在水一方应助油柑美式采纳,获得10
10秒前
我paper年年发完成签到,获得积分10
12秒前
sopha发布了新的文献求助10
13秒前
宝贝完成签到 ,获得积分10
13秒前
14秒前
云上人完成签到 ,获得积分10
18秒前
kaiii发布了新的文献求助10
18秒前
黄陈涛完成签到 ,获得积分10
20秒前
saywhy发布了新的文献求助30
22秒前
传奇3应助sopha采纳,获得10
22秒前
痛痛痛完成签到,获得积分10
24秒前
开心的机器猫完成签到,获得积分10
29秒前
鹿呦完成签到 ,获得积分10
32秒前
roy完成签到,获得积分10
35秒前
本本完成签到 ,获得积分10
37秒前
39秒前
40秒前
40秒前
40秒前
41秒前
xiaomaihua完成签到 ,获得积分10
42秒前
42秒前
42秒前
43秒前
43秒前
45秒前
油柑美式发布了新的文献求助10
45秒前
油柑美式发布了新的文献求助10
46秒前
油柑美式发布了新的文献求助10
46秒前
油柑美式发布了新的文献求助10
46秒前
油柑美式发布了新的文献求助10
46秒前
油柑美式发布了新的文献求助10
46秒前
油柑美式发布了新的文献求助10
47秒前
油柑美式发布了新的文献求助10
47秒前
油柑美式发布了新的文献求助10
48秒前
油柑美式发布了新的文献求助10
48秒前
freyaaaaa完成签到,获得积分10
49秒前
guaxi发布了新的文献求助10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498101
求助须知:如何正确求助?哪些是违规求助? 4595469
关于积分的说明 14449140
捐赠科研通 4528169
什么是DOI,文献DOI怎么找? 2481381
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283