Energy-aware trajectory optimization of CAV platoons through a signalized intersection

弹道 交叉口(航空) 燃料效率 轨迹优化 控制理论(社会学) 最优控制 计算机科学 汽车工程 最优化问题 功能(生物学) 控制(管理) 工程类 数学优化 数学 航空航天工程 算法 人工智能 进化生物学 生物 天文 物理
作者
Xiao Han,Rui Ma,Michael Zhang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:118: 102652-102652 被引量:73
标识
DOI:10.1016/j.trc.2020.102652
摘要

Traffic signals, while serving an important function to coordinate vehicle movements through intersections, also cause frequent stops and delays, particularly when they are not properly timed. Such stops and delays contribute to significant amount of fuel consumption and greenhouse gas emissions. The recent development of connected and automated vehicle (CAV) technology provides new opportunities to enable better control of vehicles and intersections, that in turn reduces fuel consumption and emissions. In this paper, we propose a trajectory optimization method, PTO-GFC, to reduce the total fuel consumption of a CAV platoon through a signalized intersection. In this method, we first apply platoon-trajectory-optimization (PTO) to obtain the optimal trajectories of the platoon vehicles. In PTO, all CAVs in one platoon are considered as a whole, that is, all other CAVs follow the trajectory of the leading one with a time delay and minimum safety gap, which is enabled by vehicle to vehicle communication. Then, we apply gap-feedback-control (GFC) to control the vehicles with different speeds and headways merging into the optimal trajectories. We compare the PTO-GFC method with the other two methods, in which the leading vehicle adopts the optimal trajectory (LTO) or drive with maximum speed (AT), respectively, and the other vehicles follow the leading vehicle with a simplified Gipps’ car-following model. Furthermore, we extend the controls into multiple platoons by considering the interactions between the two platoons. The numerical results demonstrate that PTO-GFC has better performance than LTO and AT, particularly when CAVs have enough space and time to smooth their trajectories. The reduction of travel time and fuel consumption shows the great potential of CAV technology in reducing congestion and negative environmental impact of automobile transportation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助曾宪俊采纳,获得10
5秒前
zhui发布了新的文献求助10
6秒前
加菲不掉毛完成签到,获得积分20
7秒前
江洋大盗发布了新的文献求助10
9秒前
10秒前
过眼云烟完成签到,获得积分10
12秒前
所所应助石头慢半拍采纳,获得10
13秒前
ppaahan完成签到,获得积分10
13秒前
zhui完成签到,获得积分10
14秒前
NexusExplorer应助实验耗材采纳,获得10
15秒前
17秒前
汉堡包应助annzl采纳,获得10
18秒前
ggwp完成签到,获得积分10
20秒前
20秒前
ppaahan发布了新的文献求助10
21秒前
spark发布了新的文献求助10
22秒前
23秒前
壮观的擎发布了新的文献求助10
25秒前
25秒前
ggwp发布了新的文献求助10
25秒前
yeguo发布了新的文献求助10
26秒前
丘比特应助帝国之刃采纳,获得10
26秒前
韩哈哈发布了新的文献求助10
29秒前
乖猫要努力应助liaomr采纳,获得10
30秒前
30秒前
32秒前
大菠萝发布了新的文献求助10
32秒前
auuu发布了新的文献求助10
34秒前
乐乐应助ppaahan采纳,获得10
36秒前
sdshi完成签到,获得积分10
36秒前
上官若男应助Brot_12采纳,获得10
37秒前
呼君伟完成签到 ,获得积分10
39秒前
5annnn发布了新的文献求助10
39秒前
yeguo完成签到,获得积分10
40秒前
42秒前
量子星尘发布了新的文献求助10
44秒前
44秒前
科研通AI2S应助木又权采纳,获得10
44秒前
46秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160