Lithium Diffusion Mechanism through Solid–Electrolyte Interphase in Rechargeable Lithium Batteries

电解质 扩散 锂(药物) 化学物理 相间 离子 晶界扩散系数 化学 能量学 快离子导体 晶界 微晶 材料科学 化学工程 热力学 物理化学 结晶学 电极 微观结构 医学 物理 遗传学 生物 工程类 内分泌学 有机化学
作者
Ajaykrishna Ramasubramanian,Vitaliy Yurkiv,Tara Foroozan,Marco Ragone,Reza Shahbazian‐Yassar,Farzad Mashayek
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:123 (16): 10237-10245 被引量:308
标识
DOI:10.1021/acs.jpcc.9b00436
摘要

The composition, structure, and the formation mechanism of the solid–electrolyte interphase (SEI) in lithium-based (e.g., Li-ion and Li metal) batteries have been widely explored in the literature. However, very little is known about the ion transport through the SEI. Understanding the underlying ion diffusion processes across the SEI could lead to a significant progress, enabling the performance increase and improving safety aspects of batteries. Herein, we report the results of first-principles density functional theory calculations on the dominant diffusion pathways, energetics, and the corresponding diffusion coefficients associated with Li diffusion through the polycrystalline SEI. This paper is particularly concerned with the Li diffusion through the grain boundary (GB) formed between the three major inorganic components of the SEI, such as Li2O, LiF, and Li2CO3. It is found that Li diffusion occurs through the numerous open channels formed by the GB. The energetics and potential barriers vary significantly depending upon the structure of these channels, with the general trend being that Li diffusion in the GB is generally faster than in the neighboring crystalline regions within the grain interiors. In addition, the elastic properties of the GB are calculated allowing for more profound understanding of the SEI stability and formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
syqlyd完成签到 ,获得积分10
刚刚
刚刚
刚刚
永远永远发布了新的文献求助10
1秒前
1秒前
LYQ15237208950完成签到 ,获得积分10
1秒前
木子囡月完成签到,获得积分10
1秒前
1秒前
局内人发布了新的文献求助10
1秒前
2秒前
善学以致用应助阳光彩虹采纳,获得10
2秒前
wanci应助kkem采纳,获得10
2秒前
杨晓柳完成签到,获得积分10
2秒前
3秒前
3秒前
马良完成签到,获得积分10
3秒前
整箱完成签到 ,获得积分10
3秒前
3秒前
任性子骞应助读书的时候采纳,获得10
4秒前
zhonglv7应助读书的时候采纳,获得10
4秒前
zhonglv7应助读书的时候采纳,获得10
4秒前
zhonglv7应助读书的时候采纳,获得10
4秒前
HOAN应助读书的时候采纳,获得30
4秒前
zhonglv7应助读书的时候采纳,获得10
4秒前
Zdh同学完成签到,获得积分10
4秒前
豌豆射手完成签到,获得积分20
4秒前
KK发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
曾经采蓝完成签到,获得积分10
6秒前
叶子发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
情怀应助丹三采纳,获得10
7秒前
乐乐应助三哼采纳,获得10
7秒前
7秒前
王木木发布了新的文献求助10
7秒前
吉吉完成签到,获得积分20
8秒前
biudungdung完成签到,获得积分10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750468
求助须知:如何正确求助?哪些是违规求助? 5464085
关于积分的说明 15366838
捐赠科研通 4889446
什么是DOI,文献DOI怎么找? 2629235
邀请新用户注册赠送积分活动 1577526
关于科研通互助平台的介绍 1534012