Heterogeneous Graph Neural Network

计算机科学 随机梯度下降算法 理论计算机科学 图嵌入 嵌入 图形 特征学习 异构网络 杠杆(统计) 人工神经网络 节点(物理) 人工智能 无线网络 结构工程 电信 工程类 无线
作者
Chuxu Zhang,Dongjin Song,Chao Huang,Ananthram Swami,Nitesh V. Chawla
标识
DOI:10.1145/3292500.3330961
摘要

Representation learning in heterogeneous graphs aims to pursue a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the demand to incorporate heterogeneous structural (graph) information consisting of multiple types of nodes and edges, but also due to the need for considering heterogeneous attributes or contents (e.g., text or image) associated with each node. Despite a substantial amount of effort has been made to homogeneous (or heterogeneous) graph embedding, attributed graph embedding as well as graph neural networks, few of them can jointly consider heterogeneous structural (graph) information as well as heterogeneous contents information of each node effectively. In this paper, we propose HetGNN, a heterogeneous graph neural network model, to resolve this issue. Specifically, we first introduce a random walk with restart strategy to sample a fixed size of strongly correlated heterogeneous neighbors for each node and group them based upon node types. Next, we design a neural network architecture with two modules to aggregate feature information of those sampled neighboring nodes. The first module encodes "deep" feature interactions of heterogeneous contents and generates content embedding for each node. The second module aggregates content (attribute) embeddings of different neighboring groups (types) and further combines them by considering the impacts of different groups to obtain the ultimate node embedding. Finally, we leverage a graph context loss and a mini-batch gradient descent procedure to train the model in an end-to-end manner. Extensive experiments on several datasets demonstrate that HetGNN can outperform state-of-the-art baselines in various graph mining tasks, i.e., link prediction, recommendation, node classification & clustering and inductive node classification & clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jodie完成签到,获得积分10
1秒前
优秀不愁完成签到,获得积分10
1秒前
无敌石墨烯完成签到 ,获得积分10
1秒前
杜兰特工队完成签到,获得积分10
2秒前
2秒前
碗鱼发布了新的文献求助10
2秒前
3秒前
LiDaYang完成签到,获得积分10
3秒前
吖吖完成签到,获得积分10
3秒前
可爱天川完成签到,获得积分20
3秒前
NCU-Xzzzz完成签到,获得积分10
3秒前
4秒前
lnan完成签到,获得积分10
4秒前
4秒前
云中诗完成签到,获得积分10
4秒前
Jing完成签到,获得积分10
4秒前
bb完成签到,获得积分20
5秒前
5秒前
雁过完成签到 ,获得积分10
5秒前
NCU-Xzzzz发布了新的文献求助10
6秒前
小mol仙完成签到,获得积分10
6秒前
阳光的晓夏完成签到 ,获得积分10
6秒前
7秒前
沙漠水发布了新的文献求助10
7秒前
投石问路完成签到,获得积分10
7秒前
maizai完成签到,获得积分10
7秒前
嘟嘟发布了新的文献求助30
8秒前
8秒前
en完成签到,获得积分10
8秒前
啊福发布了新的文献求助10
8秒前
所所应助每天都要开心采纳,获得10
9秒前
Zeal完成签到,获得积分10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
gayfall应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142981
求助须知:如何正确求助?哪些是违规求助? 2794000
关于积分的说明 7809074
捐赠科研通 2450260
什么是DOI,文献DOI怎么找? 1303729
科研通“疑难数据库(出版商)”最低求助积分说明 627055
版权声明 601374