清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Heterogeneous Graph Neural Network

计算机科学 随机梯度下降算法 理论计算机科学 图嵌入 嵌入 图形 特征学习 异构网络 杠杆(统计) 人工神经网络 节点(物理) 人工智能 无线网络 电信 结构工程 工程类 无线
作者
Chuxu Zhang,Dongjin Song,Chao Huang,Ananthram Swami,Nitesh V. Chawla
标识
DOI:10.1145/3292500.3330961
摘要

Representation learning in heterogeneous graphs aims to pursue a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the demand to incorporate heterogeneous structural (graph) information consisting of multiple types of nodes and edges, but also due to the need for considering heterogeneous attributes or contents (e.g., text or image) associated with each node. Despite a substantial amount of effort has been made to homogeneous (or heterogeneous) graph embedding, attributed graph embedding as well as graph neural networks, few of them can jointly consider heterogeneous structural (graph) information as well as heterogeneous contents information of each node effectively. In this paper, we propose HetGNN, a heterogeneous graph neural network model, to resolve this issue. Specifically, we first introduce a random walk with restart strategy to sample a fixed size of strongly correlated heterogeneous neighbors for each node and group them based upon node types. Next, we design a neural network architecture with two modules to aggregate feature information of those sampled neighboring nodes. The first module encodes "deep" feature interactions of heterogeneous contents and generates content embedding for each node. The second module aggregates content (attribute) embeddings of different neighboring groups (types) and further combines them by considering the impacts of different groups to obtain the ultimate node embedding. Finally, we leverage a graph context loss and a mini-batch gradient descent procedure to train the model in an end-to-end manner. Extensive experiments on several datasets demonstrate that HetGNN can outperform state-of-the-art baselines in various graph mining tasks, i.e., link prediction, recommendation, node classification & clustering and inductive node classification & clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lenny发布了新的文献求助10
2秒前
迷茫的一代完成签到,获得积分10
3秒前
可爱沛蓝完成签到 ,获得积分10
6秒前
大模型应助科研通管家采纳,获得10
8秒前
lenny完成签到,获得积分10
8秒前
方白秋完成签到,获得积分10
1分钟前
1分钟前
Betty发布了新的文献求助10
1分钟前
1分钟前
丘比特应助过氧化氢采纳,获得30
1分钟前
fufufu123完成签到 ,获得积分10
1分钟前
幽默的忆霜完成签到 ,获得积分10
1分钟前
健壮保温杯完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
小糊涂完成签到 ,获得积分10
2分钟前
2分钟前
vbnn完成签到 ,获得积分10
3分钟前
3分钟前
过氧化氢发布了新的文献求助30
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
Demi_Ming发布了新的文献求助10
3分钟前
Am完成签到 ,获得积分10
3分钟前
Hello应助科研通管家采纳,获得10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
4分钟前
英俊的铭应助和谐乌龟采纳,获得10
4分钟前
负责以山完成签到 ,获得积分10
5分钟前
胖小羊完成签到 ,获得积分10
5分钟前
Akim应助Demi_Ming采纳,获得10
5分钟前
5分钟前
sunshine完成签到 ,获得积分10
5分钟前
美满的冬卉完成签到 ,获得积分10
5分钟前
Axs完成签到,获得积分10
6分钟前
完美世界应助科研通管家采纳,获得10
6分钟前
megumin完成签到,获得积分10
6分钟前
TEY完成签到 ,获得积分10
6分钟前
jiangqin123完成签到 ,获得积分10
6分钟前
菠萝包完成签到 ,获得积分10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513318
关于积分的说明 11167297
捐赠科研通 3248697
什么是DOI,文献DOI怎么找? 1794414
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804652