已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Heterogeneous Graph Neural Network

计算机科学 随机梯度下降算法 理论计算机科学 图嵌入 嵌入 图形 特征学习 异构网络 杠杆(统计) 人工神经网络 节点(物理) 人工智能 无线网络 电信 结构工程 工程类 无线
作者
Chuxu Zhang,Dongjin Song,Chao Huang,Ananthram Swami,Nitesh V. Chawla
标识
DOI:10.1145/3292500.3330961
摘要

Representation learning in heterogeneous graphs aims to pursue a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the demand to incorporate heterogeneous structural (graph) information consisting of multiple types of nodes and edges, but also due to the need for considering heterogeneous attributes or contents (e.g., text or image) associated with each node. Despite a substantial amount of effort has been made to homogeneous (or heterogeneous) graph embedding, attributed graph embedding as well as graph neural networks, few of them can jointly consider heterogeneous structural (graph) information as well as heterogeneous contents information of each node effectively. In this paper, we propose HetGNN, a heterogeneous graph neural network model, to resolve this issue. Specifically, we first introduce a random walk with restart strategy to sample a fixed size of strongly correlated heterogeneous neighbors for each node and group them based upon node types. Next, we design a neural network architecture with two modules to aggregate feature information of those sampled neighboring nodes. The first module encodes "deep" feature interactions of heterogeneous contents and generates content embedding for each node. The second module aggregates content (attribute) embeddings of different neighboring groups (types) and further combines them by considering the impacts of different groups to obtain the ultimate node embedding. Finally, we leverage a graph context loss and a mini-batch gradient descent procedure to train the model in an end-to-end manner. Extensive experiments on several datasets demonstrate that HetGNN can outperform state-of-the-art baselines in various graph mining tasks, i.e., link prediction, recommendation, node classification & clustering and inductive node classification & clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
洁净雨柏发布了新的文献求助30
6秒前
ypyue完成签到,获得积分10
9秒前
知足的憨人*-*完成签到,获得积分10
9秒前
10秒前
susu发布了新的文献求助10
10秒前
alan完成签到 ,获得积分10
11秒前
朴实的热狗完成签到,获得积分10
11秒前
13秒前
15秒前
nature发布了新的文献求助10
16秒前
知足的憨人丫丫完成签到,获得积分10
16秒前
夏夏完成签到 ,获得积分10
17秒前
洁净雨柏完成签到,获得积分10
18秒前
朴素的紫安完成签到 ,获得积分10
18秒前
舒适静丹完成签到,获得积分10
18秒前
SASI完成签到 ,获得积分10
20秒前
舒适静丹发布了新的文献求助10
20秒前
科研通AI5应助彼岸花开采纳,获得50
24秒前
仙乐完成签到,获得积分10
26秒前
笨笨的荧荧完成签到 ,获得积分10
28秒前
30秒前
醉熏的荣轩完成签到 ,获得积分10
33秒前
落羽发布了新的文献求助10
35秒前
豆子应助SASI采纳,获得20
35秒前
36秒前
喬老師完成签到,获得积分10
36秒前
落羽完成签到,获得积分10
41秒前
牛奶拌可乐完成签到 ,获得积分10
42秒前
漂亮采波发布了新的文献求助10
43秒前
joanna完成签到,获得积分10
46秒前
Vincent1990完成签到,获得积分10
47秒前
zcc111完成签到,获得积分10
50秒前
51秒前
贪玩的蝴蝶完成签到 ,获得积分10
54秒前
凌七发布了新的文献求助10
54秒前
Kevin完成签到,获得积分10
57秒前
wbs13521完成签到,获得积分0
59秒前
Ava应助宁紫涵采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520674
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877861
科研通“疑难数据库(出版商)”最低求助积分说明 806595