State-of-the-Art Deep Learning in Cardiovascular Image Analysis

深度学习 人工智能 模式 卷积神经网络 光学相干层析成像 计算机科学 临床实习 医学影像学 机器学习 数据科学 医学 放射科 社会科学 社会学 家庭医学
作者
Geert Litjens,Francesco Ciompi,Jelmer M. Wolterink,Bob D. de Vos,Tim Leiner,Jonas Teuwen,Ivana Išgum
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:12 (8): 1549-1565 被引量:131
标识
DOI:10.1016/j.jcmg.2019.06.009
摘要

Cardiovascular imaging is going to change substantially in the next decade, fueled by the deep learning revolution. For medical professionals, it is important to keep track of these developments to ensure that deep learning can have meaningful impact on clinical practice. This review aims to be a stepping stone in this process. The general concepts underlying most successful deep learning algorithms are explained, and an overview of the state-of-the-art deep learning in cardiovascular imaging is provided. This review discusses >80 papers, covering modalities ranging from cardiac magnetic resonance, computed tomography, and single-photon emission computed tomography, to intravascular optical coherence tomography and echocardiography. Many different machines learning algorithms were used throughout these papers, with the most common being convolutional neural networks. Recent algorithms such as generative adversarial models were also used. The potential implications of deep learning algorithms on clinical practice, now and in the near future, are discussed. • Deep learning has revolutionized computer vision and is now seeing application in cardiovascular imaging. • This paper provides a thorough overview of the state of the art across applications and modalities for clinicians. • Clinicians should guide the applications of deep learning to have the most meaningful clinical impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
子车茗应助mgg采纳,获得30
3秒前
xmy发布了新的文献求助10
4秒前
5秒前
伯云发布了新的文献求助200
5秒前
5秒前
浮生若梦发布了新的文献求助10
6秒前
上官若男应助看论文采纳,获得10
6秒前
霍小美发布了新的文献求助10
11秒前
11秒前
阳光易巧发布了新的文献求助10
11秒前
14秒前
14秒前
猪猪hero应助mgg采纳,获得10
16秒前
小吕发布了新的文献求助10
17秒前
所所应助云中采纳,获得10
19秒前
cp3xzh发布了新的文献求助10
20秒前
21秒前
CipherSage应助霍小美采纳,获得10
21秒前
renxiaoting发布了新的文献求助10
21秒前
852应助赵怡宁采纳,获得10
23秒前
今后应助典雅煎蛋采纳,获得10
23秒前
25秒前
Orange应助怕黑一一采纳,获得10
26秒前
尊敬沧海发布了新的文献求助10
27秒前
孤独剑完成签到 ,获得积分10
27秒前
27秒前
Joker完成签到,获得积分10
27秒前
Hello应助生物科研小白采纳,获得10
29秒前
29秒前
浮生若梦完成签到,获得积分10
30秒前
31秒前
无花果应助小吕采纳,获得10
31秒前
半分青完成签到,获得积分10
31秒前
DUB发布了新的文献求助10
32秒前
科研通AI5应助尊敬沧海采纳,获得10
33秒前
qq发布了新的文献求助10
34秒前
赵怡宁发布了新的文献求助10
34秒前
cnty伟伟完成签到,获得积分10
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732388
求助须知:如何正确求助?哪些是违规求助? 3276694
关于积分的说明 9998043
捐赠科研通 2992255
什么是DOI,文献DOI怎么找? 1642071
邀请新用户注册赠送积分活动 780173
科研通“疑难数据库(出版商)”最低求助积分说明 748713