Implementation of the CPU/GPU hybrid parallel method of characteristics neutron transport calculation using the heterogeneous cluster with dynamic workload assignment

计算机科学 并行计算 库达 GPU群集 多核处理器 中子输运 超级计算机 消息传递接口 加速 区域分解方法 中央处理器 对称多处理机系统 图形处理单元的通用计算 消息传递 绘图 操作系统 中子 有限元法 物理 热力学 量子力学
作者
Peitao Song,Zhijian Zhang,Qian Zhang,Liang Liang,Qiang Zhao
出处
期刊:Annals of Nuclear Energy [Elsevier]
卷期号:135: 106957-106957 被引量:9
标识
DOI:10.1016/j.anucene.2019.106957
摘要

• A heterogeneous parallel MOC algorithm is implemented with MPI + OpenMP/CUDA model. • A dynamic workload assignment scheme is applied to insure the workload balance. • A performance analysis model is applied to evaluate the parallel algorithm. In recent years, graphics processing units (GPUs) have been adopted in many High-Performance Computing (HPC) systems due to their massive computational power and superior energy efficiency. And accelerating CPU-version computational code on heterogeneous clusters with multi-core CPUs and GPUs has attracted a lot of attention. One of the focus on heterogeneous computing is to efficiently take advantage of all computational resources, including both CPU and GPU available on a cluster. In this paper, a heterogeneous MPI + OpenMP/CUDA parallel algorithm for solving the 2D neutron transport equation with the method of characteristic (MOC) is implemented. In this algorithm, the spatial domain decomposition technique provides the coarse-grained parallelism with the MPI protocol while the fine-grained parallelism is exploited through OpenMP (in CPU calculated domain) and CUDA (in GPU calculated domain) based on the ray parallelization. In order to efficiently leverage the computing power of heterogeneous clusters, a dynamic workload assignment scheme is proposed, which is to distribute the workload based on the runtime performance of CPUs and GPUs in the cluster. Moreover, the strong scaling performance of the MPI + CUDA parallelization is studied through a performance analysis model which provides the detailed impact of the degradation in iteration scheme, the load imbalance issue, the data copy between CPUs and GPUs, and the MPI communication in the MPI + CUDA parallel algorithm. And the corresponding conclusion is still tenable for the MPI + OpenMP/CUDA parallelization. The C5G7 2D benchmark and an extended 2D whole-core problem are calculated with MPI + CUDA parallelization, MPI + OpenMP/CUDA parallelization, and the MPI parallelization for comparison. Numerical results demonstrate that the heterogeneous parallel algorithm maintains the desired accuracy. And the dynamic workload assignment scheme can provide the optimal workload assignment which ideally matches the experimental results. In addition, over 11% improvement is observed in MPI + OpenMP/CUDA parallelization compared against the MPI + CUDA parallelization. Moreover, the CPUs/GPUs heterogeneous clusters significantly outperform the CPUs clusters and one heterogeneous node shows basically five times faster than a CPUs node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的冰绿完成签到,获得积分10
1秒前
Estimado完成签到,获得积分10
2秒前
yx_cheng发布了新的文献求助10
2秒前
5秒前
bbdd2334发布了新的文献求助10
6秒前
7秒前
harrision完成签到,获得积分10
8秒前
害羞的夏旋完成签到,获得积分10
8秒前
9秒前
heavan关注了科研通微信公众号
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
熬夜冠军完成签到,获得积分10
12秒前
12秒前
面包超人完成签到 ,获得积分10
13秒前
15秒前
15秒前
所所应助12采纳,获得10
16秒前
完美世界应助bbdd2334采纳,获得10
16秒前
害羞奶绿发布了新的文献求助10
17秒前
17秒前
Hello应助欣__采纳,获得30
18秒前
NexusExplorer应助武雨寒采纳,获得10
20秒前
Janisa完成签到,获得积分10
20秒前
20秒前
joy001发布了新的文献求助10
22秒前
vali完成签到,获得积分10
22秒前
22秒前
英姑应助jignjing采纳,获得10
23秒前
24秒前
25秒前
沉默豆芽发布了新的文献求助10
25秒前
25秒前
duchenglin完成签到 ,获得积分10
25秒前
27秒前
28秒前
12发布了新的文献求助10
28秒前
CipherSage应助清风采纳,获得10
28秒前
29秒前
周周发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425466
求助须知:如何正确求助?哪些是违规求助? 4539502
关于积分的说明 14168309
捐赠科研通 4457101
什么是DOI,文献DOI怎么找? 2444422
邀请新用户注册赠送积分活动 1435337
关于科研通互助平台的介绍 1412740