Implementation of the CPU/GPU hybrid parallel method of characteristics neutron transport calculation using the heterogeneous cluster with dynamic workload assignment

计算机科学 并行计算 库达 GPU群集 多核处理器 中子输运 超级计算机 消息传递接口 加速 区域分解方法 中央处理器 对称多处理机系统 图形处理单元的通用计算 消息传递 绘图 操作系统 中子 有限元法 物理 热力学 量子力学
作者
Peitao Song,Zhijian Zhang,Qian Zhang,Liang Liang,Qiang Zhao
出处
期刊:Annals of Nuclear Energy [Elsevier]
卷期号:135: 106957-106957 被引量:9
标识
DOI:10.1016/j.anucene.2019.106957
摘要

• A heterogeneous parallel MOC algorithm is implemented with MPI + OpenMP/CUDA model. • A dynamic workload assignment scheme is applied to insure the workload balance. • A performance analysis model is applied to evaluate the parallel algorithm. In recent years, graphics processing units (GPUs) have been adopted in many High-Performance Computing (HPC) systems due to their massive computational power and superior energy efficiency. And accelerating CPU-version computational code on heterogeneous clusters with multi-core CPUs and GPUs has attracted a lot of attention. One of the focus on heterogeneous computing is to efficiently take advantage of all computational resources, including both CPU and GPU available on a cluster. In this paper, a heterogeneous MPI + OpenMP/CUDA parallel algorithm for solving the 2D neutron transport equation with the method of characteristic (MOC) is implemented. In this algorithm, the spatial domain decomposition technique provides the coarse-grained parallelism with the MPI protocol while the fine-grained parallelism is exploited through OpenMP (in CPU calculated domain) and CUDA (in GPU calculated domain) based on the ray parallelization. In order to efficiently leverage the computing power of heterogeneous clusters, a dynamic workload assignment scheme is proposed, which is to distribute the workload based on the runtime performance of CPUs and GPUs in the cluster. Moreover, the strong scaling performance of the MPI + CUDA parallelization is studied through a performance analysis model which provides the detailed impact of the degradation in iteration scheme, the load imbalance issue, the data copy between CPUs and GPUs, and the MPI communication in the MPI + CUDA parallel algorithm. And the corresponding conclusion is still tenable for the MPI + OpenMP/CUDA parallelization. The C5G7 2D benchmark and an extended 2D whole-core problem are calculated with MPI + CUDA parallelization, MPI + OpenMP/CUDA parallelization, and the MPI parallelization for comparison. Numerical results demonstrate that the heterogeneous parallel algorithm maintains the desired accuracy. And the dynamic workload assignment scheme can provide the optimal workload assignment which ideally matches the experimental results. In addition, over 11% improvement is observed in MPI + OpenMP/CUDA parallelization compared against the MPI + CUDA parallelization. Moreover, the CPUs/GPUs heterogeneous clusters significantly outperform the CPUs clusters and one heterogeneous node shows basically five times faster than a CPUs node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹斟酒完成签到,获得积分10
1秒前
1秒前
1秒前
请叫我风吹麦浪应助Wxd0211采纳,获得10
1秒前
1秒前
1秒前
深情安青应助美女采纳,获得10
2秒前
111完成签到,获得积分10
2秒前
葛辉辉完成签到,获得积分10
3秒前
kangkang发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
SciGPT应助ye采纳,获得10
5秒前
乐乐应助自信晟睿采纳,获得10
5秒前
葛辉辉发布了新的文献求助10
5秒前
6秒前
Wxd0211完成签到,获得积分20
6秒前
nemo完成签到,获得积分10
7秒前
小橙子发布了新的文献求助10
7秒前
lxh2424发布了新的文献求助30
7秒前
万能图书馆应助YHL采纳,获得10
7秒前
请叫我风吹麦浪应助hu970采纳,获得10
7秒前
传统的慕儿完成签到,获得积分10
8秒前
aurora完成签到 ,获得积分10
8秒前
8秒前
领导范儿应助gyt采纳,获得10
10秒前
麦麦发布了新的文献求助10
10秒前
晴天完成签到,获得积分10
10秒前
龙歪歪完成签到 ,获得积分20
11秒前
Crush完成签到,获得积分0
11秒前
苏照杭应助kydd采纳,获得10
12秒前
英姑应助研友_8yN60L采纳,获得10
12秒前
学术蠕虫完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
14秒前
中心湖小海棠完成签到,获得积分10
14秒前
Orange应助new_vision采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762