Implementation of the CPU/GPU hybrid parallel method of characteristics neutron transport calculation using the heterogeneous cluster with dynamic workload assignment

计算机科学 并行计算 库达 GPU群集 多核处理器 中子输运 超级计算机 消息传递接口 加速 区域分解方法 中央处理器 对称多处理机系统 图形处理单元的通用计算 消息传递 绘图 操作系统 中子 有限元法 物理 热力学 量子力学
作者
Peitao Song,Zhijian Zhang,Qian Zhang,Liang Liang,Qiang Zhao
出处
期刊:Annals of Nuclear Energy [Elsevier]
卷期号:135: 106957-106957 被引量:9
标识
DOI:10.1016/j.anucene.2019.106957
摘要

• A heterogeneous parallel MOC algorithm is implemented with MPI + OpenMP/CUDA model. • A dynamic workload assignment scheme is applied to insure the workload balance. • A performance analysis model is applied to evaluate the parallel algorithm. In recent years, graphics processing units (GPUs) have been adopted in many High-Performance Computing (HPC) systems due to their massive computational power and superior energy efficiency. And accelerating CPU-version computational code on heterogeneous clusters with multi-core CPUs and GPUs has attracted a lot of attention. One of the focus on heterogeneous computing is to efficiently take advantage of all computational resources, including both CPU and GPU available on a cluster. In this paper, a heterogeneous MPI + OpenMP/CUDA parallel algorithm for solving the 2D neutron transport equation with the method of characteristic (MOC) is implemented. In this algorithm, the spatial domain decomposition technique provides the coarse-grained parallelism with the MPI protocol while the fine-grained parallelism is exploited through OpenMP (in CPU calculated domain) and CUDA (in GPU calculated domain) based on the ray parallelization. In order to efficiently leverage the computing power of heterogeneous clusters, a dynamic workload assignment scheme is proposed, which is to distribute the workload based on the runtime performance of CPUs and GPUs in the cluster. Moreover, the strong scaling performance of the MPI + CUDA parallelization is studied through a performance analysis model which provides the detailed impact of the degradation in iteration scheme, the load imbalance issue, the data copy between CPUs and GPUs, and the MPI communication in the MPI + CUDA parallel algorithm. And the corresponding conclusion is still tenable for the MPI + OpenMP/CUDA parallelization. The C5G7 2D benchmark and an extended 2D whole-core problem are calculated with MPI + CUDA parallelization, MPI + OpenMP/CUDA parallelization, and the MPI parallelization for comparison. Numerical results demonstrate that the heterogeneous parallel algorithm maintains the desired accuracy. And the dynamic workload assignment scheme can provide the optimal workload assignment which ideally matches the experimental results. In addition, over 11% improvement is observed in MPI + OpenMP/CUDA parallelization compared against the MPI + CUDA parallelization. Moreover, the CPUs/GPUs heterogeneous clusters significantly outperform the CPUs clusters and one heterogeneous node shows basically five times faster than a CPUs node.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason完成签到 ,获得积分10
5秒前
Owen应助吱吱采纳,获得10
8秒前
Nothing完成签到 ,获得积分10
9秒前
周周周完成签到 ,获得积分10
11秒前
刻苦的新烟完成签到 ,获得积分0
11秒前
量子星尘发布了新的文献求助10
12秒前
纸条条完成签到 ,获得积分10
13秒前
20秒前
Cell完成签到 ,获得积分10
24秒前
梦里的大子刊完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
大方的曼容完成签到 ,获得积分10
28秒前
spring完成签到 ,获得积分10
29秒前
33秒前
无聊的烷烃完成签到,获得积分10
33秒前
不是个麻瓜完成签到,获得积分20
34秒前
SDS完成签到 ,获得积分10
35秒前
愿我如星君如月完成签到 ,获得积分10
35秒前
貔貅完成签到 ,获得积分10
38秒前
38秒前
笑点低的铁身完成签到 ,获得积分10
39秒前
慕青应助科研通管家采纳,获得10
39秒前
39秒前
不会学习的小郭完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
42秒前
小蘑菇应助不是个麻瓜采纳,获得10
44秒前
勤恳的语蝶完成签到 ,获得积分10
45秒前
滴滴完成签到 ,获得积分10
50秒前
饱满跳跳糖完成签到,获得积分10
51秒前
微笑芒果完成签到 ,获得积分0
52秒前
xdd完成签到 ,获得积分10
53秒前
陈M雯完成签到 ,获得积分10
54秒前
Laraineww完成签到 ,获得积分10
56秒前
Jing完成签到 ,获得积分10
56秒前
蛋卷完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
huco完成签到,获得积分10
1分钟前
yindi1991完成签到 ,获得积分10
1分钟前
纯真保温杯完成签到 ,获得积分10
1分钟前
四斤瓜完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664721
求助须知:如何正确求助?哪些是违规求助? 4868293
关于积分的说明 15108389
捐赠科研通 4823414
什么是DOI,文献DOI怎么找? 2582282
邀请新用户注册赠送积分活动 1536330
关于科研通互助平台的介绍 1494765