Implementation of the CPU/GPU hybrid parallel method of characteristics neutron transport calculation using the heterogeneous cluster with dynamic workload assignment

计算机科学 并行计算 库达 GPU群集 多核处理器 中子输运 超级计算机 消息传递接口 加速 区域分解方法 中央处理器 对称多处理机系统 图形处理单元的通用计算 消息传递 绘图 操作系统 中子 有限元法 物理 热力学 量子力学
作者
Peitao Song,Zhijian Zhang,Qian Zhang,Liang Liang,Qiang Zhao
出处
期刊:Annals of Nuclear Energy [Elsevier]
卷期号:135: 106957-106957 被引量:9
标识
DOI:10.1016/j.anucene.2019.106957
摘要

• A heterogeneous parallel MOC algorithm is implemented with MPI + OpenMP/CUDA model. • A dynamic workload assignment scheme is applied to insure the workload balance. • A performance analysis model is applied to evaluate the parallel algorithm. In recent years, graphics processing units (GPUs) have been adopted in many High-Performance Computing (HPC) systems due to their massive computational power and superior energy efficiency. And accelerating CPU-version computational code on heterogeneous clusters with multi-core CPUs and GPUs has attracted a lot of attention. One of the focus on heterogeneous computing is to efficiently take advantage of all computational resources, including both CPU and GPU available on a cluster. In this paper, a heterogeneous MPI + OpenMP/CUDA parallel algorithm for solving the 2D neutron transport equation with the method of characteristic (MOC) is implemented. In this algorithm, the spatial domain decomposition technique provides the coarse-grained parallelism with the MPI protocol while the fine-grained parallelism is exploited through OpenMP (in CPU calculated domain) and CUDA (in GPU calculated domain) based on the ray parallelization. In order to efficiently leverage the computing power of heterogeneous clusters, a dynamic workload assignment scheme is proposed, which is to distribute the workload based on the runtime performance of CPUs and GPUs in the cluster. Moreover, the strong scaling performance of the MPI + CUDA parallelization is studied through a performance analysis model which provides the detailed impact of the degradation in iteration scheme, the load imbalance issue, the data copy between CPUs and GPUs, and the MPI communication in the MPI + CUDA parallel algorithm. And the corresponding conclusion is still tenable for the MPI + OpenMP/CUDA parallelization. The C5G7 2D benchmark and an extended 2D whole-core problem are calculated with MPI + CUDA parallelization, MPI + OpenMP/CUDA parallelization, and the MPI parallelization for comparison. Numerical results demonstrate that the heterogeneous parallel algorithm maintains the desired accuracy. And the dynamic workload assignment scheme can provide the optimal workload assignment which ideally matches the experimental results. In addition, over 11% improvement is observed in MPI + OpenMP/CUDA parallelization compared against the MPI + CUDA parallelization. Moreover, the CPUs/GPUs heterogeneous clusters significantly outperform the CPUs clusters and one heterogeneous node shows basically five times faster than a CPUs node.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷的小熊猫完成签到,获得积分10
刚刚
1秒前
华仔应助苗苗会喵喵采纳,获得10
2秒前
4秒前
wayne完成签到,获得积分10
6秒前
zcydbttj2011完成签到 ,获得积分10
10秒前
limo完成签到 ,获得积分10
10秒前
ying完成签到,获得积分10
12秒前
析木完成签到,获得积分10
12秒前
13秒前
olivia完成签到,获得积分10
14秒前
无止完成签到,获得积分10
15秒前
千里毅完成签到,获得积分10
15秒前
科研通AI6应助keyan采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
dddd发布了新的文献求助10
17秒前
17秒前
18秒前
云止发布了新的文献求助10
18秒前
SciGPT应助不知采纳,获得10
18秒前
李德胜完成签到,获得积分10
19秒前
娜娜发布了新的文献求助10
19秒前
22秒前
22秒前
li完成签到,获得积分10
23秒前
小满发布了新的文献求助30
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
25秒前
26秒前
GUO完成签到,获得积分10
26秒前
li发布了新的文献求助10
26秒前
青蛙的第二滴口水完成签到,获得积分10
27秒前
27秒前
28秒前
芋圆发布了新的文献求助10
29秒前
29秒前
Jasper应助刘JX采纳,获得10
30秒前
小满完成签到,获得积分20
30秒前
31秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060