DeepBillboard: Systematic Physical-World Testing of Autonomous Driving Systems

对抗制 计算机科学 稳健性(进化) 人工智能 深层神经网络 计算机视觉 人工神经网络 生物化学 基因 化学
作者
Husheng Zhou,Wei Li,Yuankun Zhu,Yuqun Zhang,Bei Yu,Lingming Zhang,Cong Liu
出处
期刊:Cornell University - arXiv 被引量:39
标识
DOI:10.48550/arxiv.1812.10812
摘要

Deep Neural Networks (DNNs) have been widely applied in many autonomous systems such as autonomous driving. Recently, DNN testing has been intensively studied to automatically generate adversarial examples, which inject small-magnitude perturbations into inputs to test DNNs under extreme situations. While existing testing techniques prove to be effective, they mostly focus on generating digital adversarial perturbations (particularly for autonomous driving), e.g., changing image pixels, which may never happen in physical world. There is a critical missing piece in the literature on autonomous driving testing: understanding and exploiting both digital and physical adversarial perturbation generation for impacting steering decisions. In this paper, we present DeepBillboard, a systematic physical-world testing approach targeting at a common and practical driving scenario: drive-by billboards. DeepBillboard is capable of generating a robust and resilient printable adversarial billboard, which works under dynamic changing driving conditions including viewing angle, distance, and lighting. The objective is to maximize the possibility, degree, and duration of the steering-angle errors of an autonomous vehicle driving by the generated adversarial billboard. We have extensively evaluated the efficacy and robustness of DeepBillboard through conducting both digital and physical-world experiments. Results show that DeepBillboard is effective for various steering models and scenes. Furthermore, DeepBillboard is sufficiently robust and resilient for generating physical-world adversarial billboard tests for real-world driving under various weather conditions. To the best of our knowledge, this is the first study demonstrating the possibility of generating realistic and continuous physical-world tests for practical autonomous driving systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
大大小小发布了新的文献求助10
刚刚
Kra完成签到,获得积分10
刚刚
tiffany发布了新的文献求助30
刚刚
可心先生发布了新的文献求助10
1秒前
CipherSage应助六宫粉黛采纳,获得10
1秒前
yzy完成签到,获得积分10
1秒前
1秒前
2秒前
过雨露发布了新的文献求助10
2秒前
王佳欣完成签到,获得积分10
2秒前
2秒前
2秒前
打打应助跳跃虔采纳,获得10
2秒前
2秒前
半个榴莲完成签到,获得积分10
3秒前
3秒前
狗干完成签到,获得积分10
3秒前
炼丹师应助娇气的背包采纳,获得20
3秒前
3秒前
华仔应助周亚平采纳,获得10
3秒前
3秒前
4秒前
zxzxzx完成签到,获得积分10
4秒前
聪明的书包完成签到 ,获得积分10
4秒前
孙昌耀完成签到,获得积分10
4秒前
小乌龟发布了新的文献求助10
5秒前
王一发布了新的文献求助10
5秒前
5秒前
小二郎应助大大小小采纳,获得10
5秒前
量子星尘发布了新的文献求助20
5秒前
5秒前
6秒前
xiaofeizhu发布了新的文献求助10
6秒前
lingyao发布了新的文献求助10
6秒前
李瑞瑞发布了新的文献求助10
6秒前
典雅的惜霜完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001912
求助须知:如何正确求助?哪些是违规求助? 4247027
关于积分的说明 13231838
捐赠科研通 4045844
什么是DOI,文献DOI怎么找? 2213310
邀请新用户注册赠送积分活动 1223414
关于科研通互助平台的介绍 1143754