DeepBillboard: Systematic Physical-World Testing of Autonomous Driving Systems

对抗制 计算机科学 稳健性(进化) 人工智能 深层神经网络 计算机视觉 人工神经网络 生物化学 基因 化学
作者
Husheng Zhou,Wei Li,Yuankun Zhu,Yuqun Zhang,Bei Yu,Lingming Zhang,Cong Liu
出处
期刊:Cornell University - arXiv 被引量:39
标识
DOI:10.48550/arxiv.1812.10812
摘要

Deep Neural Networks (DNNs) have been widely applied in many autonomous systems such as autonomous driving. Recently, DNN testing has been intensively studied to automatically generate adversarial examples, which inject small-magnitude perturbations into inputs to test DNNs under extreme situations. While existing testing techniques prove to be effective, they mostly focus on generating digital adversarial perturbations (particularly for autonomous driving), e.g., changing image pixels, which may never happen in physical world. There is a critical missing piece in the literature on autonomous driving testing: understanding and exploiting both digital and physical adversarial perturbation generation for impacting steering decisions. In this paper, we present DeepBillboard, a systematic physical-world testing approach targeting at a common and practical driving scenario: drive-by billboards. DeepBillboard is capable of generating a robust and resilient printable adversarial billboard, which works under dynamic changing driving conditions including viewing angle, distance, and lighting. The objective is to maximize the possibility, degree, and duration of the steering-angle errors of an autonomous vehicle driving by the generated adversarial billboard. We have extensively evaluated the efficacy and robustness of DeepBillboard through conducting both digital and physical-world experiments. Results show that DeepBillboard is effective for various steering models and scenes. Furthermore, DeepBillboard is sufficiently robust and resilient for generating physical-world adversarial billboard tests for real-world driving under various weather conditions. To the best of our knowledge, this is the first study demonstrating the possibility of generating realistic and continuous physical-world tests for practical autonomous driving systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
Orange应助qing采纳,获得10
刚刚
科研通AI6.1应助科研通管家采纳,获得150
刚刚
刚刚
mengtingmei应助科研通管家采纳,获得10
刚刚
charint应助科研通管家采纳,获得10
刚刚
1秒前
chen完成签到,获得积分10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
MZP完成签到,获得积分10
1秒前
1秒前
会飞的螃蟹完成签到,获得积分10
1秒前
叫我富婆儿完成签到,获得积分10
2秒前
Cynthia完成签到,获得积分10
3秒前
演化的蛙鱼完成签到,获得积分10
3秒前
yu完成签到,获得积分10
4秒前
tutman发布了新的文献求助10
5秒前
犹豫的昊焱完成签到,获得积分10
5秒前
able完成签到,获得积分10
8秒前
ThomasZ完成签到,获得积分10
9秒前
9秒前
10秒前
柒柒球完成签到,获得积分10
10秒前
闪闪的硬币完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
14秒前
jiangkuaile完成签到 ,获得积分10
14秒前
白马爱毛驴完成签到,获得积分10
15秒前
大伟完成签到,获得积分10
15秒前
16秒前
清璃发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
哆啦A梦完成签到 ,获得积分10
18秒前
SHI发布了新的文献求助10
19秒前
amanda发布了新的文献求助10
20秒前
KX2024发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789767
求助须知:如何正确求助?哪些是违规求助? 5723251
关于积分的说明 15475510
捐赠科研通 4917557
什么是DOI,文献DOI怎么找? 2647071
邀请新用户注册赠送积分活动 1594728
关于科研通互助平台的介绍 1549205