DeepBillboard: Systematic Physical-World Testing of Autonomous Driving Systems

对抗制 计算机科学 稳健性(进化) 人工智能 深层神经网络 计算机视觉 人工神经网络 生物化学 基因 化学
作者
Husheng Zhou,Wei Li,Yuankun Zhu,Yuqun Zhang,Bei Yu,Lingming Zhang,Cong Liu
出处
期刊:Cornell University - arXiv 被引量:39
标识
DOI:10.48550/arxiv.1812.10812
摘要

Deep Neural Networks (DNNs) have been widely applied in many autonomous systems such as autonomous driving. Recently, DNN testing has been intensively studied to automatically generate adversarial examples, which inject small-magnitude perturbations into inputs to test DNNs under extreme situations. While existing testing techniques prove to be effective, they mostly focus on generating digital adversarial perturbations (particularly for autonomous driving), e.g., changing image pixels, which may never happen in physical world. There is a critical missing piece in the literature on autonomous driving testing: understanding and exploiting both digital and physical adversarial perturbation generation for impacting steering decisions. In this paper, we present DeepBillboard, a systematic physical-world testing approach targeting at a common and practical driving scenario: drive-by billboards. DeepBillboard is capable of generating a robust and resilient printable adversarial billboard, which works under dynamic changing driving conditions including viewing angle, distance, and lighting. The objective is to maximize the possibility, degree, and duration of the steering-angle errors of an autonomous vehicle driving by the generated adversarial billboard. We have extensively evaluated the efficacy and robustness of DeepBillboard through conducting both digital and physical-world experiments. Results show that DeepBillboard is effective for various steering models and scenes. Furthermore, DeepBillboard is sufficiently robust and resilient for generating physical-world adversarial billboard tests for real-world driving under various weather conditions. To the best of our knowledge, this is the first study demonstrating the possibility of generating realistic and continuous physical-world tests for practical autonomous driving systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddffgz发布了新的文献求助30
刚刚
AAA完成签到,获得积分10
1秒前
王永详发布了新的文献求助10
1秒前
LDL完成签到,获得积分10
1秒前
1秒前
2秒前
潮鸣完成签到 ,获得积分10
2秒前
calm完成签到 ,获得积分10
2秒前
FashionBoy应助明明采纳,获得10
2秒前
dwls应助Cx330采纳,获得10
2秒前
缥缈完成签到,获得积分10
3秒前
李健的小迷弟应助tr采纳,获得10
3秒前
大咖完成签到 ,获得积分10
3秒前
3秒前
4秒前
8R60d8应助2011509382采纳,获得10
5秒前
ch3oh完成签到,获得积分10
5秒前
why发布了新的文献求助10
5秒前
青尘枫叶发布了新的文献求助10
5秒前
6秒前
yun完成签到,获得积分10
6秒前
6秒前
孤竹雅弦完成签到,获得积分10
6秒前
语音助手完成签到 ,获得积分10
7秒前
7秒前
你大米哥完成签到 ,获得积分10
8秒前
meng完成签到,获得积分10
9秒前
hjj完成签到,获得积分10
9秒前
zjcbk985完成签到,获得积分10
9秒前
桔子鲁完成签到,获得积分10
9秒前
roselin26关注了科研通微信公众号
9秒前
lym发布了新的文献求助10
9秒前
juejue-小七完成签到,获得积分10
10秒前
Likyliky完成签到,获得积分10
10秒前
谢谢发布了新的文献求助10
10秒前
乐乐应助青尘枫叶采纳,获得10
11秒前
缥缈发布了新的文献求助10
11秒前
ayingjiang发布了新的文献求助10
12秒前
俟天晴完成签到,获得积分10
12秒前
NPC应助Pp采纳,获得10
13秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068596
求助须知:如何正确求助?哪些是违规求助? 2722493
关于积分的说明 7477698
捐赠科研通 2369542
什么是DOI,文献DOI怎么找? 1256421
科研通“疑难数据库(出版商)”最低求助积分说明 609576
版权声明 596835