Deep-Learning-Based Optimization of the Under-Sampling Pattern in MRI

计算机科学 采样(信号处理) 人工智能 混叠 笛卡尔坐标系 压缩传感 迭代重建 卷积神经网络 模式识别(心理学) 集合(抽象数据类型) 网格 计算机视觉 欠采样 数学 滤波器(信号处理) 几何学 程序设计语言
作者
Cagla Deniz Bahadir,Alan Q. Wang,Adrian V. Dalca,Mert R. Sabuncu
出处
期刊:IEEE transactions on computational imaging 卷期号:6: 1139-1152 被引量:100
标识
DOI:10.1109/tci.2020.3006727
摘要

In compressed sensing MRI (CS-MRI), k-space measurements are under-sampled to achieve accelerated scan times. CS-MRI presents two fundamental problems: (1) where to sample and (2) how to reconstruct an under-sampled scan. In this article, we tackle both problems simultaneously for the specific case of 2D Cartesian sampling, using a novel end-to-end learning framework that we call LOUPE (Learning-based Optimization of the Under-sampling PattErn). Our method trains a neural network model on a set of full-resolution MRI scans, which are retrospectively under-sampled on a 2D Cartesian grid and forwarded to an anti-aliasing (a.k.a. reconstruction) model that computes a reconstruction, which is in turn compared with the input. This formulation enables a data-driven optimized under-sampling pattern at a given sparsity level. In our experiments, we demonstrate that LOUPE-optimized under-sampling masks are data-dependent, varying significantly with the imaged anatomy, and perform well with different reconstruction methods. We present empirical results obtained with a large-scale, publicly available knee MRI dataset, where LOUPE offered superior reconstruction quality across different conditions. Even with an aggressive 8-fold acceleration rate, LOUPE's reconstructions contained much of the anatomical detail that was missed by alternative masks and reconstruction methods. Our experiments also show how LOUPE yielded optimal under-sampling patterns that were significantly different for brain vs knee MRI scans. Our code is made freely available at https://github.com/cagladbahadir/LOUPE/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Falling完成签到,获得积分10
刚刚
哎嘤斯坦发布了新的文献求助10
1秒前
2秒前
寻道图强应助alex采纳,获得30
3秒前
jxcydm发布了新的文献求助10
5秒前
5秒前
君克渡完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
8秒前
加油完成签到,获得积分20
8秒前
个性鲂完成签到,获得积分20
9秒前
Minhuky发布了新的文献求助10
9秒前
alltoowell完成签到,获得积分0
10秒前
小帅哥发布了新的文献求助10
10秒前
个性鲂发布了新的文献求助10
12秒前
12秒前
炙热靖雁发布了新的文献求助30
12秒前
你好啊发布了新的文献求助10
14秒前
jing216完成签到 ,获得积分10
14秒前
obsession完成签到 ,获得积分10
14秒前
vans如意完成签到 ,获得积分10
15秒前
15秒前
万能图书馆应助脱壳金蝉采纳,获得10
17秒前
小帅哥完成签到,获得积分10
20秒前
21秒前
22秒前
Dceer发布了新的文献求助10
22秒前
22秒前
CodeCraft应助你好啊采纳,获得10
25秒前
FireNow完成签到 ,获得积分10
26秒前
小巫发布了新的文献求助10
26秒前
treasure完成签到,获得积分10
27秒前
28秒前
科研天才韦某完成签到,获得积分20
29秒前
30秒前
恢复出厂设置完成签到 ,获得积分10
30秒前
30秒前
YJY完成签到 ,获得积分10
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139874
求助须知:如何正确求助?哪些是违规求助? 2790776
关于积分的说明 7796637
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301692
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194