Deep-Learning-Based Optimization of the Under-Sampling Pattern in MRI

计算机科学 采样(信号处理) 人工智能 混叠 笛卡尔坐标系 压缩传感 迭代重建 卷积神经网络 模式识别(心理学) 集合(抽象数据类型) 网格 计算机视觉 欠采样 数学 滤波器(信号处理) 几何学 程序设计语言
作者
Cagla Deniz Bahadir,Alan Q. Wang,Adrian V. Dalca,Mert R. Sabuncu
出处
期刊:IEEE transactions on computational imaging 卷期号:6: 1139-1152 被引量:132
标识
DOI:10.1109/tci.2020.3006727
摘要

In compressed sensing MRI (CS-MRI), k-space measurements are under-sampled to achieve accelerated scan times. CS-MRI presents two fundamental problems: (1) where to sample and (2) how to reconstruct an under-sampled scan. In this article, we tackle both problems simultaneously for the specific case of 2D Cartesian sampling, using a novel end-to-end learning framework that we call LOUPE (Learning-based Optimization of the Under-sampling PattErn). Our method trains a neural network model on a set of full-resolution MRI scans, which are retrospectively under-sampled on a 2D Cartesian grid and forwarded to an anti-aliasing (a.k.a. reconstruction) model that computes a reconstruction, which is in turn compared with the input. This formulation enables a data-driven optimized under-sampling pattern at a given sparsity level. In our experiments, we demonstrate that LOUPE-optimized under-sampling masks are data-dependent, varying significantly with the imaged anatomy, and perform well with different reconstruction methods. We present empirical results obtained with a large-scale, publicly available knee MRI dataset, where LOUPE offered superior reconstruction quality across different conditions. Even with an aggressive 8-fold acceleration rate, LOUPE's reconstructions contained much of the anatomical detail that was missed by alternative masks and reconstruction methods. Our experiments also show how LOUPE yielded optimal under-sampling patterns that were significantly different for brain vs knee MRI scans. Our code is made freely available at https://github.com/cagladbahadir/LOUPE/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
丘比特应助刘俣彤采纳,获得10
1秒前
1秒前
充电宝应助www采纳,获得10
1秒前
糊涂虫发布了新的文献求助30
1秒前
2秒前
小毛发布了新的文献求助10
2秒前
TK完成签到 ,获得积分10
3秒前
这只蝴蝶在乎完成签到,获得积分10
3秒前
5秒前
5秒前
柳柳发布了新的文献求助10
6秒前
1403912262发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
锦慜发布了新的文献求助10
7秒前
Endless完成签到,获得积分10
8秒前
深情安青应助凡人烦事采纳,获得10
9秒前
9秒前
SY15732023811完成签到 ,获得积分10
9秒前
9秒前
10秒前
不配.应助合适夏天采纳,获得200
10秒前
11秒前
陈总留下了新的社区评论
12秒前
12秒前
tiam发布了新的文献求助10
12秒前
star应助这道题没有解采纳,获得10
12秒前
领导范儿应助健壮的半青采纳,获得10
13秒前
等待兔子给等待兔子的求助进行了留言
14秒前
Qi完成签到 ,获得积分10
14秒前
14秒前
15秒前
浮游应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
16秒前
SJJ应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646