A combined model of dissolved oxygen prediction in the pond based on multiple-factor analysis and multi-scale feature extraction

主成分分析 水质 特征提取 随机森林 组分(热力学) 人工智能 比例(比率) 计算机科学 生物系统 数据挖掘 生态学 量子力学 生物 热力学 物理
作者
Weijian Cao,Juan Huan,Chen Liu,Yong Qin,Fan Wu
出处
期刊:Aquacultural Engineering [Elsevier BV]
卷期号:84: 50-59 被引量:29
标识
DOI:10.1016/j.aquaeng.2018.12.003
摘要

As dissolved oxygen (DO) is an important indicator of water quality in aquaculture, an accurate prediction for DO can effectively improve quantity and quality of product. Accordingly, a novel hybrid dissolved oxygen prediction model, which combines the multiple-factor analysis and the multi-scale feature extraction, is proposed. Firstly, considering that dissolved oxygen is affected by complex factors, water temperature and pH are chosen as the most relevant environmental factors for dissolved oxygen, using grey relational degree method. Secondly, the ensemble empirical mode decomposition (EEMD) is adopted to decompose the dissolved oxygen, water temperature and pH data into several sub-sequences, respectively. Then, the sample entropy (SE) algorithm reconstructs the sub-sequences to obtain the trend component, random component and detail component. Lastly, regularized extreme learning machine (RELM), a currently effective and stable artificial intelligent (AI) tool, is applied to predict three components independently. The prediction models of random component, detail component and trend component are RELM1, RELM2 and RELM3 respectively. The dissolved oxygen, water temperature and pH of the random component forms the input layer of RELM1, and predicted value of dissolved oxygen in the random component is the output layer of RELM1. The input and output of RELM2 and RELM3 are similar to that of RELM1. Final prediction results are obtained by superimposing three components predicted values. One of the main features of the proposed approach is that it integrates the multiple-factor analysis and the multi-scale feature extraction using grey correlation analysis and EEMD. Its performance is compared with several outstanding algorithms. Results for experiment show that the proposed model has satisfactory performance and high precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jenningseastera应助yh采纳,获得10
1秒前
林昀完成签到 ,获得积分10
1秒前
可爱的函函应助Yuanyuan采纳,获得10
2秒前
Owen应助敏感初露采纳,获得10
2秒前
善学以致用应助WDQ2024采纳,获得10
3秒前
4秒前
4秒前
我没那么郝完成签到,获得积分10
4秒前
dong应助热心不凡采纳,获得10
4秒前
4秒前
田様应助冷漠的布丁采纳,获得10
5秒前
holycale完成签到,获得积分10
5秒前
祈雨的鲸鱼完成签到,获得积分10
5秒前
5秒前
Ava应助程星宇采纳,获得10
7秒前
细辛完成签到,获得积分10
7秒前
小净儿发布了新的文献求助10
7秒前
信仰xy发布了新的文献求助10
7秒前
敏感初露完成签到,获得积分10
9秒前
9秒前
魔幻的凝荷完成签到,获得积分10
9秒前
10秒前
lh发布了新的文献求助10
10秒前
细辛发布了新的文献求助10
10秒前
11秒前
素衣发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
13秒前
13秒前
马博的司机完成签到,获得积分10
13秒前
SYLH应助努力学习ing采纳,获得10
14秒前
脑洞疼应助努力学习ing采纳,获得10
14秒前
Julia完成签到,获得积分20
14秒前
15秒前
15秒前
Li发布了新的文献求助30
15秒前
mirayq发布了新的文献求助10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199