A combined model of dissolved oxygen prediction in the pond based on multiple-factor analysis and multi-scale feature extraction

主成分分析 水质 特征提取 随机森林 组分(热力学) 人工智能 比例(比率) 计算机科学 生物系统 数据挖掘 生态学 量子力学 生物 热力学 物理
作者
Weijian Cao,Juan Huan,Chen Liu,Yong Qin,Fan Wu
出处
期刊:Aquacultural Engineering [Elsevier]
卷期号:84: 50-59 被引量:29
标识
DOI:10.1016/j.aquaeng.2018.12.003
摘要

As dissolved oxygen (DO) is an important indicator of water quality in aquaculture, an accurate prediction for DO can effectively improve quantity and quality of product. Accordingly, a novel hybrid dissolved oxygen prediction model, which combines the multiple-factor analysis and the multi-scale feature extraction, is proposed. Firstly, considering that dissolved oxygen is affected by complex factors, water temperature and pH are chosen as the most relevant environmental factors for dissolved oxygen, using grey relational degree method. Secondly, the ensemble empirical mode decomposition (EEMD) is adopted to decompose the dissolved oxygen, water temperature and pH data into several sub-sequences, respectively. Then, the sample entropy (SE) algorithm reconstructs the sub-sequences to obtain the trend component, random component and detail component. Lastly, regularized extreme learning machine (RELM), a currently effective and stable artificial intelligent (AI) tool, is applied to predict three components independently. The prediction models of random component, detail component and trend component are RELM1, RELM2 and RELM3 respectively. The dissolved oxygen, water temperature and pH of the random component forms the input layer of RELM1, and predicted value of dissolved oxygen in the random component is the output layer of RELM1. The input and output of RELM2 and RELM3 are similar to that of RELM1. Final prediction results are obtained by superimposing three components predicted values. One of the main features of the proposed approach is that it integrates the multiple-factor analysis and the multi-scale feature extraction using grey correlation analysis and EEMD. Its performance is compared with several outstanding algorithms. Results for experiment show that the proposed model has satisfactory performance and high precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助caohai采纳,获得10
刚刚
gongjunxian发布了新的文献求助10
1秒前
3秒前
希望天下0贩的0应助990723采纳,获得10
3秒前
satoha发布了新的文献求助30
4秒前
田様应助静香采纳,获得10
5秒前
www完成签到,获得积分10
6秒前
科研通AI2S应助超级笑南采纳,获得10
6秒前
JX发布了新的文献求助10
8秒前
9秒前
9秒前
完美世界应助dungaway采纳,获得20
12秒前
方赫然应助完美的海秋采纳,获得10
13秒前
14秒前
忆之完成签到,获得积分10
14秒前
十三发布了新的文献求助10
15秒前
神勇灵竹完成签到 ,获得积分10
15秒前
990723发布了新的文献求助10
15秒前
肉肉发布了新的文献求助10
16秒前
yyy发布了新的文献求助10
20秒前
21秒前
要减肥南霜完成签到 ,获得积分10
23秒前
FashionBoy应助sci_zt采纳,获得10
23秒前
钟志成完成签到,获得积分20
23秒前
Mia完成签到,获得积分10
23秒前
990723完成签到,获得积分10
24秒前
24秒前
26秒前
高高发布了新的文献求助10
27秒前
静香发布了新的文献求助10
27秒前
牛顿的苹果完成签到,获得积分10
29秒前
Mystic完成签到,获得积分10
29秒前
菠萝完成签到 ,获得积分10
29秒前
29秒前
顾矜应助热心的苡采纳,获得10
29秒前
虚幻的凤完成签到,获得积分10
30秒前
执着念烟完成签到,获得积分10
30秒前
zhy发布了新的文献求助10
32秒前
32秒前
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243620
求助须知:如何正确求助?哪些是违规求助? 2887504
关于积分的说明 8248565
捐赠科研通 2556082
什么是DOI,文献DOI怎么找? 1384225
科研通“疑难数据库(出版商)”最低求助积分说明 649827
邀请新用户注册赠送积分活动 625738