Driver’s Facial Expression Recognition in Real-Time for Safe Driving

分类器(UML) 计算机科学 人工智能 随机森林 面部表情识别 模式识别(心理学) 人工神经网络 深度学习 深层神经网络 面部表情 机器学习 面部识别系统
作者
Mira Jeong,Byoung Chul Ko
出处
期刊:Sensors [MDPI AG]
卷期号:18 (12): 4270-4270 被引量:98
标识
DOI:10.3390/s18124270
摘要

In recent years, researchers of deep neural networks (DNNs)-based facial expression recognition (FER) have reported results showing that these approaches overcome the limitations of conventional machine learning-based FER approaches. However, as DNN-based FER approaches require an excessive amount of memory and incur high processing costs, their application in various fields is very limited and depends on the hardware specifications. In this paper, we propose a fast FER algorithm for monitoring a driver's emotions that is capable of operating in low specification devices installed in vehicles. For this purpose, a hierarchical weighted random forest (WRF) classifier that is trained based on the similarity of sample data, in order to improve its accuracy, is employed. In the first step, facial landmarks are detected from input images and geometric features are extracted, considering the spatial position between landmarks. These feature vectors are then implemented in the proposed hierarchical WRF classifier to classify facial expressions. Our method was evaluated experimentally using three databases, extended Cohn-Kanade database (CK+), MMI and the Keimyung University Facial Expression of Drivers (KMU-FED) database, and its performance was compared with that of state-of-the-art methods. The results show that our proposed method yields a performance similar to that of deep learning FER methods as 92.6% for CK+ and 76.7% for MMI, with a significantly reduced processing cost approximately 3731 times less than that of the DNN method. These results confirm that the proposed method is optimized for real-time embedded applications having limited computing resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助光能使者采纳,获得10
刚刚
967完成签到,获得积分20
刚刚
刘星宇发布了新的文献求助10
刚刚
1秒前
游一完成签到,获得积分10
1秒前
含糊的尔槐完成签到,获得积分10
2秒前
2秒前
967发布了新的文献求助10
4秒前
4秒前
粗心的含莲完成签到,获得积分10
4秒前
笑槐完成签到,获得积分20
4秒前
小稀发布了新的文献求助10
5秒前
所所应助秦磊采纳,获得10
6秒前
烟花应助科研小菜采纳,获得10
6秒前
热心汉堡发布了新的文献求助30
7秒前
张秋雨完成签到,获得积分10
8秒前
超级傲安发布了新的文献求助20
9秒前
一盏灯发布了新的文献求助10
9秒前
11秒前
11秒前
12秒前
12秒前
suan完成签到,获得积分20
12秒前
16秒前
日生完成签到,获得积分10
16秒前
爱科研的小九九完成签到,获得积分10
18秒前
敏感人杰发布了新的文献求助10
18秒前
光能使者发布了新的文献求助10
19秒前
一盏灯完成签到,获得积分10
19秒前
qq发布了新的文献求助10
20秒前
未来完成签到,获得积分10
20秒前
嘒彼小星完成签到 ,获得积分10
20秒前
糖炒栗子完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
22秒前
22秒前
24秒前
晓E完成签到,获得积分10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441735
求助须知:如何正确求助?哪些是违规求助? 3038293
关于积分的说明 8971453
捐赠科研通 2726658
什么是DOI,文献DOI怎么找? 1495529
科研通“疑难数据库(出版商)”最低求助积分说明 691221
邀请新用户注册赠送积分活动 688269