Driver’s Facial Expression Recognition in Real-Time for Safe Driving

分类器(UML) 计算机科学 人工智能 随机森林 面部表情识别 模式识别(心理学) 人工神经网络 深度学习 深层神经网络 面部表情 机器学习 面部识别系统
作者
Mira Jeong,Byoung Chul Ko
出处
期刊:Sensors [MDPI AG]
卷期号:18 (12): 4270-4270 被引量:98
标识
DOI:10.3390/s18124270
摘要

In recent years, researchers of deep neural networks (DNNs)-based facial expression recognition (FER) have reported results showing that these approaches overcome the limitations of conventional machine learning-based FER approaches. However, as DNN-based FER approaches require an excessive amount of memory and incur high processing costs, their application in various fields is very limited and depends on the hardware specifications. In this paper, we propose a fast FER algorithm for monitoring a driver's emotions that is capable of operating in low specification devices installed in vehicles. For this purpose, a hierarchical weighted random forest (WRF) classifier that is trained based on the similarity of sample data, in order to improve its accuracy, is employed. In the first step, facial landmarks are detected from input images and geometric features are extracted, considering the spatial position between landmarks. These feature vectors are then implemented in the proposed hierarchical WRF classifier to classify facial expressions. Our method was evaluated experimentally using three databases, extended Cohn-Kanade database (CK+), MMI and the Keimyung University Facial Expression of Drivers (KMU-FED) database, and its performance was compared with that of state-of-the-art methods. The results show that our proposed method yields a performance similar to that of deep learning FER methods as 92.6% for CK+ and 76.7% for MMI, with a significantly reduced processing cost approximately 3731 times less than that of the DNN method. These results confirm that the proposed method is optimized for real-time embedded applications having limited computing resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
Agernon应助柔弱的麦片采纳,获得10
1秒前
山月鹿发布了新的文献求助10
2秒前
调皮的勒完成签到,获得积分10
2秒前
cmq完成签到 ,获得积分10
2秒前
jzhou88完成签到,获得积分10
2秒前
dogsday完成签到,获得积分10
3秒前
CHyaa完成签到,获得积分10
3秒前
学术小白发布了新的文献求助10
4秒前
xml发布了新的文献求助10
4秒前
星辰大海应助雷半双采纳,获得10
4秒前
5秒前
lgold完成签到,获得积分10
5秒前
ldk完成签到,获得积分10
5秒前
5秒前
5秒前
甜美的瑾瑜完成签到,获得积分10
5秒前
爱卿5271完成签到,获得积分10
6秒前
7秒前
在水一方应助wund采纳,获得10
8秒前
某只橘猫君完成签到,获得积分10
8秒前
年轻水风完成签到,获得积分20
8秒前
一味地丶逞强完成签到,获得积分10
8秒前
游艺完成签到 ,获得积分10
9秒前
岂识浊醪妙理完成签到,获得积分10
9秒前
一路向北4956完成签到,获得积分0
9秒前
可乐完成签到,获得积分20
9秒前
爆米花应助我来了采纳,获得10
9秒前
9秒前
大方的小海豚完成签到,获得积分10
9秒前
车水完成签到 ,获得积分10
10秒前
身处人海完成签到,获得积分10
10秒前
10秒前
10秒前
无私的黄豆完成签到 ,获得积分10
10秒前
甜甜友容完成签到,获得积分10
11秒前
12秒前
年轻水风发布了新的文献求助10
12秒前
12秒前
脑洞疼应助xml采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556269
求助须知:如何正确求助?哪些是违规求助? 3131813
关于积分的说明 9393417
捐赠科研通 2831860
什么是DOI,文献DOI怎么找? 1556519
邀请新用户注册赠送积分活动 726691
科研通“疑难数据库(出版商)”最低求助积分说明 716012