Complex network approaches to nonlinear time series analysis

物理 系列(地层学) 复杂网络 非线性系统 多样性(控制论) 领域(数学) 统计物理学 网络动力学 计算机科学 动力系统理论 复杂系统 管理科学 理论计算机科学 数据科学 人工智能 量子力学 万维网 离散数学 古生物学 生物 经济 纯数学 数学
作者
Yong Zou,Reik V. Donner,Norbert Marwan,Jonathan F. Donges,Jürgen Kurths
出处
期刊:Physics Reports [Elsevier]
卷期号:787: 1-97 被引量:485
标识
DOI:10.1016/j.physrep.2018.10.005
摘要

In the last decade, there has been a growing body of literature addressing the utilization of complex network methods for the characterization of dynamical systems based on time series. While both nonlinear time series analysis and complex network theory are widely considered to be established fields of complex systems sciences with strong links to nonlinear dynamics and statistical physics, the thorough combination of both approaches has become an active field of nonlinear time series analysis, which has allowed addressing fundamental questions regarding the structural organization of nonlinear dynamics as well as the successful treatment of a variety of applications from a broad range of disciplines. In this report, we provide an in-depth review of existing approaches of time series networks, covering their methodological foundations, interpretation and practical considerations with an emphasis on recent developments. After a brief outline of the state-of-the-art of nonlinear time series analysis and the theory of complex networks, we focus on three main network approaches, namely, phase space based recurrence networks, visibility graphs and Markov chain based transition networks, all of which have made their way from abstract concepts to widely used methodologies. These three concepts, as well as several variants thereof will be discussed in great detail regarding their specific properties, potentials and limitations. More importantly, we emphasize which fundamental new insights complex network approaches bring into the field of nonlinear time series analysis. In addition, we summarize examples from the wide range of recent applications of these methods, covering rather diverse fields like climatology, fluid dynamics, neurophysiology, engineering and economics, and demonstrating the great potentials of time series networks for tackling real-world contemporary scientific problems. The overall aim of this report is to provide the readers with the knowledge how the complex network approaches can be applied to their own field of real-world time series analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楼沁发布了新的文献求助10
3秒前
仲夏完成签到,获得积分10
3秒前
zhengzhao完成签到,获得积分10
4秒前
4秒前
5秒前
ShenghuiH完成签到,获得积分10
5秒前
lrl发布了新的文献求助10
8秒前
可爱的函函应助zhuhan采纳,获得10
11秒前
拾壹完成签到 ,获得积分10
14秒前
15秒前
16秒前
明若清完成签到,获得积分10
16秒前
我是老大应助小笼包采纳,获得10
17秒前
godgyw完成签到 ,获得积分10
18秒前
无花果应助zhangyulu采纳,获得10
18秒前
鲜艳的芝麻应助小何同学采纳,获得10
19秒前
XXF完成签到,获得积分10
20秒前
20秒前
21秒前
zyfqpc应助lrl采纳,获得10
22秒前
煮饭吃Zz发布了新的文献求助10
22秒前
lalala发布了新的文献求助10
24秒前
BCS完成签到,获得积分10
24秒前
Ava应助竹谕采纳,获得10
25秒前
一朵云完成签到 ,获得积分10
25秒前
26秒前
zho关闭了zho文献求助
26秒前
29秒前
濮阳盼曼发布了新的文献求助10
31秒前
WangXW完成签到,获得积分10
31秒前
木九完成签到 ,获得积分10
32秒前
Orange应助起風了采纳,获得10
34秒前
34秒前
35秒前
天天快乐应助科研通管家采纳,获得10
35秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
今后应助科研通管家采纳,获得10
36秒前
赘婿应助科研通管家采纳,获得10
36秒前
Lucas应助科研通管家采纳,获得10
36秒前
慕青应助科研通管家采纳,获得10
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159748
求助须知:如何正确求助?哪些是违规求助? 2810660
关于积分的说明 7889023
捐赠科研通 2469717
什么是DOI,文献DOI怎么找? 1315035
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012