Anisotropy is a natural feature of polarization states, and only fully random three-dimensional (3D) states exhibit complete isotropy. In general, differences between the strengths of the electric field components along the three orthogonal directions give rise to intensity anisotropy. Moreover, polarization states involve an average spin whose inherent vectorial nature constitutes a source of spin anisotropy. In this work, appropriate descriptors are identified to characterize quantitatively the levels of intensity anisotropy and spin anisotropy of a general 3D polarization state, leading to a novel interpretation for the degree of polarimetric purity as a measure describing the overall polarimetric anisotropy of a 3D optical field. The mathematical representation, as well as the physical features of completely intensity-isotropic 3D polarization states with a maximum spin anisotropy, are also examined. The results provide new insights into the polarimetric field structure of random 3D electromagnetic light states.