Statistical Workflow for Feature Selection in Human Metabolomics Data

代谢组学 工作流程 计算机科学 数据科学 领域(数学) 比例(比率) 标准化 数据挖掘 生物信息学 生物 物理 数学 量子力学 数据库 纯数学 操作系统
作者
Joseph Antonelli,Brian Claggett,Mir Henglin,Andy Kim,Gavin Ovsak,Nicole Kim,Katherine Deng,Kevin Rao,Octavia Tyagi,Jeramie D. Watrous,Kim A. Lagerborg,Pavel Hushcha,Olga Demler,Samia Mora,Teemu J. Niiranen,Alexandre C. Pereira,Mohit Jain,Susan Cheng
出处
期刊:Metabolites [MDPI AG]
卷期号:9 (7): 143-143 被引量:64
标识
DOI:10.3390/metabo9070143
摘要

High-throughput metabolomics investigations, when conducted in large human cohorts, represent a potentially powerful tool for elucidating the biochemical diversity underlying human health and disease. Large-scale metabolomics data sources, generated using either targeted or nontargeted platforms, are becoming more common. Appropriate statistical analysis of these complex high-dimensional data will be critical for extracting meaningful results from such large-scale human metabolomics studies. Therefore, we consider the statistical analytical approaches that have been employed in prior human metabolomics studies. Based on the lessons learned and collective experience to date in the field, we offer a step-by-step framework for pursuing statistical analyses of cohort-based human metabolomics data, with a focus on feature selection. We discuss the range of options and approaches that may be employed at each stage of data management, analysis, and interpretation and offer guidance on the analytical decisions that need to be considered over the course of implementing a data analysis workflow. Certain pervasive analytical challenges facing the field warrant ongoing focused research. Addressing these challenges, particularly those related to analyzing human metabolomics data, will allow for more standardization of as well as advances in how research in the field is practiced. In turn, such major analytical advances will lead to substantial improvements in the overall contributions of human metabolomics investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XXF发布了新的文献求助10
1秒前
赤邪发布了新的文献求助10
1秒前
石头发布了新的文献求助10
1秒前
2秒前
Ricky完成签到,获得积分10
2秒前
上官若男应助luuuuuu采纳,获得10
2秒前
杨永亮完成签到,获得积分10
3秒前
3秒前
袁粪到了完成签到 ,获得积分10
3秒前
3秒前
异烟肼完成签到 ,获得积分10
3秒前
Jenny应助通~采纳,获得10
3秒前
yory完成签到 ,获得积分10
4秒前
4秒前
远航完成签到 ,获得积分10
4秒前
4秒前
彭于晏应助Rrr采纳,获得10
4秒前
卓然发布了新的文献求助10
4秒前
精明的中蓝完成签到,获得积分10
5秒前
66应助小钻风采纳,获得10
5秒前
5秒前
领导范儿应助星星采纳,获得10
6秒前
汉堡包应助shotgod采纳,获得10
6秒前
如寄完成签到 ,获得积分10
6秒前
顾闭月发布了新的文献求助10
7秒前
研友_VZG7GZ应助石头采纳,获得10
7秒前
有益发布了新的文献求助10
8秒前
xibei完成签到 ,获得积分10
8秒前
9秒前
丘比特应助爱吃肉的猪采纳,获得10
9秒前
9秒前
9秒前
dyh6802发布了新的文献求助10
9秒前
10秒前
Wxx完成签到 ,获得积分10
10秒前
七栀完成签到,获得积分10
10秒前
科研通AI2S应助阿芙乐尔采纳,获得10
12秒前
一条贤与完成签到,获得积分20
12秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794