Statistical Workflow for Feature Selection in Human Metabolomics Data

代谢组学 工作流程 计算机科学 数据科学 领域(数学) 比例(比率) 标准化 数据挖掘 生物信息学 生物 数学 量子力学 数据库 操作系统 物理 纯数学
作者
Joseph Antonelli,Brian Claggett,Mir Henglin,Andy Kim,Gavin Ovsak,Nicole Kim,Katherine Deng,Kevin Rao,Octavia Tyagi,Jeramie D. Watrous,Kim A. Lagerborg,Pavel Hushcha,Olga Demler,Samia Mora,Teemu J. Niiranen,Alexandre C. Pereira,Mohit Jain,Susan Cheng
出处
期刊:Metabolites [Multidisciplinary Digital Publishing Institute]
卷期号:9 (7): 143-143 被引量:64
标识
DOI:10.3390/metabo9070143
摘要

High-throughput metabolomics investigations, when conducted in large human cohorts, represent a potentially powerful tool for elucidating the biochemical diversity underlying human health and disease. Large-scale metabolomics data sources, generated using either targeted or nontargeted platforms, are becoming more common. Appropriate statistical analysis of these complex high-dimensional data will be critical for extracting meaningful results from such large-scale human metabolomics studies. Therefore, we consider the statistical analytical approaches that have been employed in prior human metabolomics studies. Based on the lessons learned and collective experience to date in the field, we offer a step-by-step framework for pursuing statistical analyses of cohort-based human metabolomics data, with a focus on feature selection. We discuss the range of options and approaches that may be employed at each stage of data management, analysis, and interpretation and offer guidance on the analytical decisions that need to be considered over the course of implementing a data analysis workflow. Certain pervasive analytical challenges facing the field warrant ongoing focused research. Addressing these challenges, particularly those related to analyzing human metabolomics data, will allow for more standardization of as well as advances in how research in the field is practiced. In turn, such major analytical advances will lead to substantial improvements in the overall contributions of human metabolomics investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欢呼的夏兰完成签到,获得积分20
刚刚
1秒前
1秒前
1秒前
云里完成签到,获得积分10
1秒前
2秒前
2秒前
arrebol完成签到,获得积分10
2秒前
2秒前
超人会飞233完成签到,获得积分10
3秒前
zmnzmnzmn发布了新的文献求助10
3秒前
roaring发布了新的文献求助10
3秒前
HXH发布了新的文献求助10
3秒前
swityha完成签到,获得积分10
3秒前
22222完成签到,获得积分10
3秒前
汉堡包应助慈祥的书竹采纳,获得10
4秒前
他忽然的人完成签到 ,获得积分10
4秒前
充电宝应助上岸上岸2采纳,获得30
4秒前
阿布楼发布了新的文献求助10
4秒前
5秒前
阳阳完成签到,获得积分10
5秒前
5秒前
lyh发布了新的文献求助10
5秒前
5秒前
xm完成签到,获得积分10
6秒前
Liquor发布了新的文献求助10
6秒前
Tao发布了新的文献求助10
7秒前
7秒前
科研通AI5应助秋秋采纳,获得10
7秒前
奥利奥发布了新的文献求助20
7秒前
7秒前
kun完成签到,获得积分10
7秒前
充电宝应助xk1993采纳,获得10
8秒前
9秒前
安安生生发布了新的文献求助10
9秒前
芒果柠檬发布了新的文献求助10
10秒前
10秒前
11秒前
jiu发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560761
求助须知:如何正确求助?哪些是违规求助? 3986733
关于积分的说明 12343977
捐赠科研通 3657453
什么是DOI,文献DOI怎么找? 2015045
邀请新用户注册赠送积分活动 1049726
科研通“疑难数据库(出版商)”最低求助积分说明 937918