亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Statistical Workflow for Feature Selection in Human Metabolomics Data

代谢组学 工作流程 计算机科学 数据科学 领域(数学) 比例(比率) 标准化 数据挖掘 生物信息学 生物 数学 量子力学 数据库 操作系统 物理 纯数学
作者
Joseph Antonelli,Brian Claggett,Mir Henglin,Andy Kim,Gavin Ovsak,Nicole Kim,Katherine Deng,Kevin Rao,Octavia Tyagi,Jeramie D. Watrous,Kim A. Lagerborg,Pavel Hushcha,Olga Demler,Samia Mora,Teemu J. Niiranen,Alexandre C. Pereira,Mohit Jain,Susan Cheng
出处
期刊:Metabolites [MDPI AG]
卷期号:9 (7): 143-143 被引量:64
标识
DOI:10.3390/metabo9070143
摘要

High-throughput metabolomics investigations, when conducted in large human cohorts, represent a potentially powerful tool for elucidating the biochemical diversity underlying human health and disease. Large-scale metabolomics data sources, generated using either targeted or nontargeted platforms, are becoming more common. Appropriate statistical analysis of these complex high-dimensional data will be critical for extracting meaningful results from such large-scale human metabolomics studies. Therefore, we consider the statistical analytical approaches that have been employed in prior human metabolomics studies. Based on the lessons learned and collective experience to date in the field, we offer a step-by-step framework for pursuing statistical analyses of cohort-based human metabolomics data, with a focus on feature selection. We discuss the range of options and approaches that may be employed at each stage of data management, analysis, and interpretation and offer guidance on the analytical decisions that need to be considered over the course of implementing a data analysis workflow. Certain pervasive analytical challenges facing the field warrant ongoing focused research. Addressing these challenges, particularly those related to analyzing human metabolomics data, will allow for more standardization of as well as advances in how research in the field is practiced. In turn, such major analytical advances will lead to substantial improvements in the overall contributions of human metabolomics investigations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
kk_1315完成签到,获得积分0
8秒前
敬业乐群完成签到,获得积分10
10秒前
22秒前
学术小菜鸟完成签到 ,获得积分10
26秒前
Guts发布了新的文献求助10
26秒前
木有完成签到 ,获得积分10
36秒前
Bin_Liu完成签到,获得积分20
36秒前
36秒前
38秒前
画星星发布了新的文献求助10
38秒前
amengptsd完成签到,获得积分10
38秒前
crx发布了新的文献求助10
41秒前
44秒前
大模型应助crx采纳,获得10
45秒前
48秒前
55秒前
echo发布了新的文献求助10
55秒前
56秒前
123完成签到,获得积分10
59秒前
1分钟前
小昭发布了新的文献求助10
1分钟前
1分钟前
打工人发布了新的文献求助10
1分钟前
顺利的边牧完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研小白发布了新的文献求助10
1分钟前
1分钟前
abc应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
某某完成签到 ,获得积分10
1分钟前
慕青应助yue采纳,获得10
1分钟前
1分钟前
李健应助TRISTE采纳,获得10
1分钟前
段皖顺完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754731
求助须知:如何正确求助?哪些是违规求助? 5489024
关于积分的说明 15380533
捐赠科研通 4893223
什么是DOI,文献DOI怎么找? 2631816
邀请新用户注册赠送积分活动 1579732
关于科研通互助平台的介绍 1535521