已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Statistical Workflow for Feature Selection in Human Metabolomics Data

代谢组学 工作流程 计算机科学 数据科学 领域(数学) 比例(比率) 标准化 数据挖掘 生物信息学 生物 物理 数学 量子力学 数据库 纯数学 操作系统
作者
Joseph Antonelli,Brian Claggett,Mir Henglin,Andy Kim,Gavin Ovsak,Nicole Kim,Katherine Deng,Kevin Rao,Octavia Tyagi,Jeramie D. Watrous,Kim A. Lagerborg,Pavel Hushcha,Olga Demler,Samia Mora,Teemu J. Niiranen,Alexandre C. Pereira,Mohit Jain,Susan Cheng
出处
期刊:Metabolites [MDPI AG]
卷期号:9 (7): 143-143 被引量:64
标识
DOI:10.3390/metabo9070143
摘要

High-throughput metabolomics investigations, when conducted in large human cohorts, represent a potentially powerful tool for elucidating the biochemical diversity underlying human health and disease. Large-scale metabolomics data sources, generated using either targeted or nontargeted platforms, are becoming more common. Appropriate statistical analysis of these complex high-dimensional data will be critical for extracting meaningful results from such large-scale human metabolomics studies. Therefore, we consider the statistical analytical approaches that have been employed in prior human metabolomics studies. Based on the lessons learned and collective experience to date in the field, we offer a step-by-step framework for pursuing statistical analyses of cohort-based human metabolomics data, with a focus on feature selection. We discuss the range of options and approaches that may be employed at each stage of data management, analysis, and interpretation and offer guidance on the analytical decisions that need to be considered over the course of implementing a data analysis workflow. Certain pervasive analytical challenges facing the field warrant ongoing focused research. Addressing these challenges, particularly those related to analyzing human metabolomics data, will allow for more standardization of as well as advances in how research in the field is practiced. In turn, such major analytical advances will lead to substantial improvements in the overall contributions of human metabolomics investigations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cuo关注了科研通微信公众号
3秒前
善学以致用应助细细语声采纳,获得10
5秒前
shuwang发布了新的文献求助10
5秒前
6秒前
星辰大海应助ww采纳,获得10
7秒前
科目三应助肉桂采纳,获得10
7秒前
7秒前
Yellow完成签到,获得积分10
8秒前
忧郁如柏完成签到,获得积分10
9秒前
10秒前
传奇3应助脆脆鲨采纳,获得10
10秒前
GXWFDC完成签到 ,获得积分10
11秒前
11秒前
糖糖发布了新的文献求助10
11秒前
汉堡包应助shuwang采纳,获得10
13秒前
321完成签到,获得积分10
15秒前
小轩完成签到,获得积分10
15秒前
小恐龙飞飞完成签到 ,获得积分10
16秒前
16秒前
打打应助小石头采纳,获得10
17秒前
SciGPT应助cai采纳,获得10
18秒前
郭蓉洁完成签到,获得积分10
19秒前
19秒前
海洋完成签到,获得积分10
20秒前
20秒前
20秒前
扶摇完成签到 ,获得积分10
20秒前
mo完成签到 ,获得积分10
20秒前
yaokoala发布了新的文献求助10
21秒前
21秒前
clover完成签到 ,获得积分10
23秒前
羊羊羊发布了新的文献求助10
24秒前
25秒前
26秒前
慕青应助鱼摆摆摆摆采纳,获得10
27秒前
123发布了新的文献求助10
27秒前
汉堡包应助彩色向秋采纳,获得30
28秒前
好运連連完成签到 ,获得积分10
28秒前
33秒前
CodeCraft应助安详的芷采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663749
求助须知:如何正确求助?哪些是违规求助? 4852666
关于积分的说明 15105645
捐赠科研通 4822017
什么是DOI,文献DOI怎么找? 2581141
邀请新用户注册赠送积分活动 1535336
关于科研通互助平台的介绍 1493672