Statistical Workflow for Feature Selection in Human Metabolomics Data

代谢组学 工作流程 计算机科学 数据科学 领域(数学) 比例(比率) 标准化 数据挖掘 生物信息学 生物 物理 数学 量子力学 数据库 纯数学 操作系统
作者
Joseph Antonelli,Brian Claggett,Mir Henglin,Andy Kim,Gavin Ovsak,Nicole Kim,Katherine Deng,Kevin Rao,Octavia Tyagi,Jeramie D. Watrous,Kim A. Lagerborg,Pavel Hushcha,Olga Demler,Samia Mora,Teemu J. Niiranen,Alexandre C. Pereira,Mohit Jain,Susan Cheng
出处
期刊:Metabolites [MDPI AG]
卷期号:9 (7): 143-143 被引量:64
标识
DOI:10.3390/metabo9070143
摘要

High-throughput metabolomics investigations, when conducted in large human cohorts, represent a potentially powerful tool for elucidating the biochemical diversity underlying human health and disease. Large-scale metabolomics data sources, generated using either targeted or nontargeted platforms, are becoming more common. Appropriate statistical analysis of these complex high-dimensional data will be critical for extracting meaningful results from such large-scale human metabolomics studies. Therefore, we consider the statistical analytical approaches that have been employed in prior human metabolomics studies. Based on the lessons learned and collective experience to date in the field, we offer a step-by-step framework for pursuing statistical analyses of cohort-based human metabolomics data, with a focus on feature selection. We discuss the range of options and approaches that may be employed at each stage of data management, analysis, and interpretation and offer guidance on the analytical decisions that need to be considered over the course of implementing a data analysis workflow. Certain pervasive analytical challenges facing the field warrant ongoing focused research. Addressing these challenges, particularly those related to analyzing human metabolomics data, will allow for more standardization of as well as advances in how research in the field is practiced. In turn, such major analytical advances will lead to substantial improvements in the overall contributions of human metabolomics investigations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cablebot发布了新的文献求助10
1秒前
梦会故乡发布了新的文献求助10
1秒前
niNe3YUE应助结实的XMZ采纳,获得10
1秒前
科目三应助mlx采纳,获得10
1秒前
gstaihn发布了新的文献求助10
2秒前
zhihaiyu完成签到,获得积分10
2秒前
尘晨发布了新的文献求助10
3秒前
刘英岑发布了新的文献求助10
3秒前
smottom应助小贱采纳,获得10
3秒前
踏雾发布了新的文献求助10
3秒前
4秒前
4秒前
NAWAZ完成签到,获得积分20
4秒前
4秒前
5秒前
Cruella完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
Joshua完成签到,获得积分10
5秒前
科研通AI6应助65164采纳,获得30
6秒前
搜集达人应助科研白采纳,获得10
6秒前
Amo完成签到,获得积分10
6秒前
FashionBoy应助活泼听露采纳,获得20
6秒前
pragmatic完成签到,获得积分10
6秒前
xx完成签到 ,获得积分10
6秒前
浮名半生发布了新的文献求助10
6秒前
丁浩添发布了新的文献求助10
6秒前
zhihaiyu发布了新的文献求助10
6秒前
6秒前
梦会故乡完成签到,获得积分10
7秒前
7秒前
隐形曼青应助daxiangqaq采纳,获得10
7秒前
李健应助LYY采纳,获得10
7秒前
wangshibing发布了新的文献求助10
9秒前
9秒前
羽安完成签到,获得积分10
9秒前
9秒前
uupp发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163