Statistical Workflow for Feature Selection in Human Metabolomics Data

代谢组学 工作流程 计算机科学 数据科学 领域(数学) 比例(比率) 标准化 数据挖掘 生物信息学 生物 数学 量子力学 数据库 操作系统 物理 纯数学
作者
Joseph Antonelli,Brian Claggett,Mir Henglin,Andy Kim,Gavin Ovsak,Nicole Kim,Katherine Deng,Kevin Rao,Octavia Tyagi,Jeramie D. Watrous,Kim A. Lagerborg,Pavel Hushcha,Olga Demler,Samia Mora,Teemu J. Niiranen,Alexandre C. Pereira,Mohit Jain,Susan Cheng
出处
期刊:Metabolites [MDPI AG]
卷期号:9 (7): 143-143 被引量:64
标识
DOI:10.3390/metabo9070143
摘要

High-throughput metabolomics investigations, when conducted in large human cohorts, represent a potentially powerful tool for elucidating the biochemical diversity underlying human health and disease. Large-scale metabolomics data sources, generated using either targeted or nontargeted platforms, are becoming more common. Appropriate statistical analysis of these complex high-dimensional data will be critical for extracting meaningful results from such large-scale human metabolomics studies. Therefore, we consider the statistical analytical approaches that have been employed in prior human metabolomics studies. Based on the lessons learned and collective experience to date in the field, we offer a step-by-step framework for pursuing statistical analyses of cohort-based human metabolomics data, with a focus on feature selection. We discuss the range of options and approaches that may be employed at each stage of data management, analysis, and interpretation and offer guidance on the analytical decisions that need to be considered over the course of implementing a data analysis workflow. Certain pervasive analytical challenges facing the field warrant ongoing focused research. Addressing these challenges, particularly those related to analyzing human metabolomics data, will allow for more standardization of as well as advances in how research in the field is practiced. In turn, such major analytical advances will lead to substantial improvements in the overall contributions of human metabolomics investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容半仙发布了新的文献求助30
刚刚
雨恋凡尘完成签到,获得积分10
刚刚
刚刚
October完成签到,获得积分10
刚刚
1秒前
慕青应助xkh采纳,获得10
1秒前
2秒前
神勇友灵完成签到,获得积分10
2秒前
nhscyhy发布了新的文献求助10
3秒前
丫丫完成签到,获得积分10
4秒前
4秒前
5秒前
hanghang完成签到,获得积分10
6秒前
6秒前
7秒前
FR完成签到,获得积分10
7秒前
尼格尼格尼完成签到,获得积分10
7秒前
7秒前
夏风完成签到 ,获得积分10
8秒前
8秒前
水澈天澜完成签到,获得积分10
9秒前
夏夏发布了新的文献求助10
9秒前
正直三颜完成签到,获得积分10
9秒前
可爱的函函应助nhscyhy采纳,获得10
9秒前
10秒前
yufanhui应助静影沉璧采纳,获得10
11秒前
123应助555采纳,获得20
11秒前
可乐发布了新的文献求助10
12秒前
12秒前
瑞雪发布了新的文献求助10
12秒前
开心千青发布了新的文献求助10
13秒前
13秒前
xkh发布了新的文献求助10
13秒前
共享精神应助Misaki采纳,获得10
15秒前
Creamai完成签到,获得积分10
16秒前
夏夏完成签到,获得积分10
17秒前
所所应助judy891zhu采纳,获得20
17秒前
mhl11应助闲杂人等采纳,获得10
18秒前
香蕉觅云应助时尚语梦采纳,获得10
18秒前
白科研发布了新的文献求助10
18秒前
高分求助中
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
Artificial Intelligence: Foundations of ComputationalAgents, 3rd Edition Solution Manual and Instructor Resources 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308081
求助须知:如何正确求助?哪些是违规求助? 2941598
关于积分的说明 8504517
捐赠科研通 2616249
什么是DOI,文献DOI怎么找? 1429510
科研通“疑难数据库(出版商)”最低求助积分说明 663787
邀请新用户注册赠送积分活动 648720