Statistical Workflow for Feature Selection in Human Metabolomics Data

代谢组学 工作流程 计算机科学 数据科学 领域(数学) 比例(比率) 标准化 数据挖掘 生物信息学 生物 物理 数学 量子力学 数据库 纯数学 操作系统
作者
Joseph Antonelli,Brian Claggett,Mir Henglin,Andy Kim,Gavin Ovsak,Nicole Kim,Katherine Deng,Kevin Rao,Octavia Tyagi,Jeramie D. Watrous,Kim A. Lagerborg,Pavel Hushcha,Olga Demler,Samia Mora,Teemu J. Niiranen,Alexandre C. Pereira,Mohit Jain,Susan Cheng
出处
期刊:Metabolites [MDPI AG]
卷期号:9 (7): 143-143 被引量:64
标识
DOI:10.3390/metabo9070143
摘要

High-throughput metabolomics investigations, when conducted in large human cohorts, represent a potentially powerful tool for elucidating the biochemical diversity underlying human health and disease. Large-scale metabolomics data sources, generated using either targeted or nontargeted platforms, are becoming more common. Appropriate statistical analysis of these complex high-dimensional data will be critical for extracting meaningful results from such large-scale human metabolomics studies. Therefore, we consider the statistical analytical approaches that have been employed in prior human metabolomics studies. Based on the lessons learned and collective experience to date in the field, we offer a step-by-step framework for pursuing statistical analyses of cohort-based human metabolomics data, with a focus on feature selection. We discuss the range of options and approaches that may be employed at each stage of data management, analysis, and interpretation and offer guidance on the analytical decisions that need to be considered over the course of implementing a data analysis workflow. Certain pervasive analytical challenges facing the field warrant ongoing focused research. Addressing these challenges, particularly those related to analyzing human metabolomics data, will allow for more standardization of as well as advances in how research in the field is practiced. In turn, such major analytical advances will lead to substantial improvements in the overall contributions of human metabolomics investigations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吸烟外形看完成签到,获得积分10
刚刚
打打应助xuan采纳,获得10
刚刚
香蕉觅云应助xuan采纳,获得10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
李健的粉丝团团长应助xuan采纳,获得30
1秒前
pluto应助xuan采纳,获得10
1秒前
1秒前
所所应助xuan采纳,获得10
1秒前
CodeCraft应助xuan采纳,获得10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
1秒前
一叶知秋应助xuan采纳,获得20
1秒前
可爱的函函应助xuan采纳,获得10
1秒前
1秒前
墨泷发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
孙瑞完成签到,获得积分10
3秒前
4秒前
4秒前
思源应助wang采纳,获得10
4秒前
槐序二三发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
111发布了新的文献求助10
6秒前
dou发布了新的文献求助10
6秒前
6秒前
科研通AI6应助JJJJccW采纳,获得10
6秒前
嘟嘟完成签到,获得积分10
7秒前
7秒前
科研通AI6应助Picrif采纳,获得10
7秒前
asdfzxcv应助WangYZ采纳,获得10
7秒前
天天快乐应助xuan采纳,获得10
7秒前
pluto应助xuan采纳,获得10
7秒前
我是老大应助xuan采纳,获得10
7秒前
一叶知秋应助xuan采纳,获得10
7秒前
科研通AI6应助xuan采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407