遍历理论
平稳分布
李雅普诺夫函数
消光(光学矿物学)
应用数学
流行病模型
遍历性
数学
随机建模
统计物理学
数理经济学
计算机科学
数学分析
物理
马尔可夫链
统计
医学
人口
光学
环境卫生
非线性系统
量子力学
作者
Qun Li,Daqing Jiang,Tasawar Hayat,Ahmed Alsaedi
标识
DOI:10.1016/j.jfranklin.2018.11.056
摘要
In this paper, a stochastic epidemic model for cholera is proposed and investigated. Firstly, we establish sufficient conditions for extinction of the disease. Then we establish sufficient criteria for the existence of a unique ergodic stationary distribution of the positive solutions to the model by constructing a suitable stochastic Lyapunov function. The existence of an ergodic stationary distribution implies that all the individuals can be coexistent in the long run. Finally, some examples together with numerical simulations are introduced to illustrate our theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI