Numerical simulation of stent deployment within patient-specific artery and its validation against clinical data

支架 软件部署 动脉壁 计算机模拟 放射科 计算机科学 过程(计算) 模拟 医学 内科学 操作系统
作者
Tijana Djukić,Igor Šaveljić,Gualtiero Pelosi,Oberdan Parodi,Nenad Filipović
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:175: 121-127 被引量:22
标识
DOI:10.1016/j.cmpb.2019.04.005
摘要

One of the most widely adopted endovascular treatment procedures is the stent implantation. The effectiveness of the treatment depends on the appropriate stent expansion. However, it is difficult to accurately predict the outcome of such an endovascular intervention. Numerical simulations represent a useful tool to study the complex behavior of the stent during deployment. This study presents a numerical model capable of simulating this process.The numerical model consists of three parts: modeling of stent expansion, modeling the interaction of the stent with the arterial wall and the deformation of the arterial wall. The model is able to predict the shapes of both stent and arterial wall during the entire deployment process. Simulations are performed using patient-specific clinical data that ensures more realistic results.The numerical simulations of stent deployment are performed using the extracted geometry of the coronary arteries of two patients. The obtained results are validated against clinical data from the follow up examination and both quantitative and qualitative analysis of the results is presented. The areas of several slices of the arterial wall are calculated for all the three states (before, after and follow up) and the standard error of the area when comparing simulation and follow up examination is 5.27% for patient #1 and 4.5% for patient #2.The final goal of numerical simulations in stent deployment should be to provide a clinical tool that is capable of reliably predicting the treatment outcome. This study showed through the good agreement of results of the numerical simulations and clinical data that the presented numerical model represents a step towards this final goal. These simulations can also provide valuable information about distribution of forces and stress in the arterial wall that can improve pre-operative planning and treatment optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2023204306324发布了新的文献求助10
2秒前
4秒前
欲见完成签到 ,获得积分10
6秒前
9秒前
小杜小杜发布了新的文献求助30
9秒前
寻123发布了新的文献求助10
9秒前
9秒前
kid发布了新的文献求助10
12秒前
风中幻儿完成签到,获得积分10
14秒前
17秒前
甜辣小泡芙完成签到 ,获得积分10
18秒前
wu发布了新的文献求助10
20秒前
21秒前
czx发布了新的文献求助10
23秒前
包容的荷花完成签到,获得积分10
25秒前
kkrian完成签到,获得积分10
26秒前
Zhaoyuemeng发布了新的文献求助10
27秒前
南烛完成签到 ,获得积分10
28秒前
孙靖博完成签到,获得积分10
28秒前
寻123完成签到,获得积分10
29秒前
852应助Tree_QD采纳,获得10
30秒前
wu完成签到,获得积分10
32秒前
斯文败类应助wu采纳,获得10
36秒前
爆米花应助hhh采纳,获得10
36秒前
XS_QI发布了新的文献求助10
37秒前
老A完成签到,获得积分10
40秒前
41秒前
复杂的火龙果完成签到 ,获得积分10
44秒前
大模型应助czx采纳,获得10
44秒前
47秒前
50秒前
asd发布了新的文献求助10
51秒前
WWL完成签到 ,获得积分10
51秒前
hank完成签到 ,获得积分10
52秒前
郦稀完成签到,获得积分10
54秒前
577发布了新的文献求助10
56秒前
小叶完成签到 ,获得积分10
58秒前
58秒前
XS_QI发布了新的文献求助10
59秒前
59秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847516
求助须知:如何正确求助?哪些是违规求助? 6226943
关于积分的说明 15620380
捐赠科研通 4964176
什么是DOI,文献DOI怎么找? 2676458
邀请新用户注册赠送积分活动 1621027
关于科研通互助平台的介绍 1576958