Deep learning for time series classification: a review

深度学习 计算机科学 人工智能 水准点(测量) 机器学习 时间序列 卷积神经网络 单变量 残余物 领域(数学) 深层神经网络 多元统计 算法 数学 大地测量学 纯数学 地理
作者
Hassan Ismail Fawaz,Germain Forestier,Jonathan Weber,Lhassane Idoumghar,Pierre-Alain Müller
出处
期刊:Data Mining and Knowledge Discovery [Springer Nature]
卷期号:33 (4): 917-963 被引量:2254
标识
DOI:10.1007/s10618-019-00619-1
摘要

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心蜜蜂完成签到,获得积分10
1秒前
良辰应助Zack采纳,获得10
2秒前
SYLH应助机智元珊采纳,获得10
2秒前
3秒前
hhhs完成签到,获得积分10
4秒前
嘘嘘发布了新的文献求助20
4秒前
露露完成签到,获得积分10
4秒前
Amber发布了新的文献求助10
4秒前
高高的如彤完成签到 ,获得积分10
4秒前
DUANG-Jerry发布了新的文献求助10
4秒前
狂扁小学生完成签到,获得积分10
4秒前
5秒前
111应助西蓝花采纳,获得10
5秒前
mjy完成签到,获得积分10
5秒前
何三岁发布了新的文献求助10
6秒前
万能图书馆应助jokeyoonic采纳,获得10
6秒前
8秒前
8秒前
SYLH应助西一兮采纳,获得10
9秒前
万安安完成签到,获得积分10
10秒前
10秒前
科研小白LR完成签到,获得积分10
10秒前
zsd完成签到,获得积分10
11秒前
11秒前
过滤膜发布了新的文献求助20
12秒前
12秒前
嗯哼发布了新的文献求助10
12秒前
MaruzenGroove发布了新的文献求助10
12秒前
13秒前
zsd发布了新的文献求助10
14秒前
露露发布了新的文献求助10
14秒前
15秒前
斯文败类应助科研小白采纳,获得10
15秒前
赘婿应助mm采纳,获得10
15秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590126
求助须知:如何正确求助?哪些是违规求助? 3158548
关于积分的说明 9520381
捐赠科研通 2861526
什么是DOI,文献DOI怎么找? 1572595
邀请新用户注册赠送积分活动 737955
科研通“疑难数据库(出版商)”最低求助积分说明 722598