Changes in Catalytic and Adsorptive Properties of 2 nm Pt3Mn Nanoparticles by Subsurface Atoms
化学
催化作用
纳米颗粒
化学工程
锰
纳米技术
无机化学
有机化学
工程类
材料科学
作者
Zhenwei Wu,Brandon C. Bukowski,Zhe Li,Cory A. Milligan,Lin Zhou,Tao Ma,Yue Wu,Yang Ren,Fabio H. Ribeiro,W. Nicholas Delgass,Jeffrey Greeley,Guanghui Zhang,Jeffrey T. Miller
Supported multimetallic nanoparticles (NPs) are widely used in industrial catalytic processes, where the relation between surface structure and function is well-known. However, the effect of subsurface layers on such catalysts remains mostly unstudied. Here, we demonstrate a clear subsurface effect on supported 2 nm core–shell NPs with atomically precise and high temperature stable Pt3Mn intermetallic surface measured by in situ synchrotron X-ray Diffraction, difference X-ray Absorption Spectroscopy, and Energy Dispersive X-ray Spectroscopy. The NPs with a Pt3Mn subsurface have 98% selectivity to C–H over C–C bond activation during propane dehydrogenation at 550 °C compared with 82% for core–shell NPs with a Pt subsurface. The difference is correlated with significant reduction in the heats of reactant adsorption due to the Pt3Mn intermetallic subsurface as discerned by theory as well as experiment. The findings of this work highlight the importance of subsurface for supported NP catalysts, which can be tuned via controlled intermetallic formation. Such approach is generally applicable to modifying multimetallic NPs, adding another dimension to the tunability of their catalytic performance.