缺少数据
辍学(神经网络)
R包
纵向数据
计算机科学
广义估计方程
选型
吉
边际模型
统计
选择(遗传算法)
估计方程
计量经济学
数据挖掘
数学
回归分析
最大似然
机器学习
作者
Cong Xu,Zheng Li,Yuan Xue,Lijun Zhang,Ming Wang
标识
DOI:10.1080/03610918.2018.1468457
摘要
Missing data arise frequently in clinical and epidemiological fields, in particular in longitudinal studies. This paper describes the core features of an R package wgeesel, which implements marginal model fitting (i.e., weighted generalized estimating equations, WGEE; doubly robust GEE) for longitudinal data with dropouts under the assumption of missing at random. More importantly, this package comprehensively provide existing information criteria for WGEE model selection on marginal mean or correlation structures. Also, it can serve as a valuable tool for simulating longitudinal data with missing outcomes. Lastly, a real data example and simulations are presented to illustrate and validate our package.
科研通智能强力驱动
Strongly Powered by AbleSci AI