氯化胆碱
化学
离子液体
氯化物
有机化学
果糖
柠檬酸
马来酸
产量(工程)
催化作用
聚合物
共聚物
冶金
材料科学
作者
Thibaut Istasse,Lauris Bockstal,Aurore Richel
标识
DOI:10.1002/cplu.201800416
摘要
The use of safe and sustainable solvents able to solvate reagents and to catalyze their reactions at temperatures below 100 °C is an innovative strategy to develop future lignocellulosic biorefineries. Many low-transition-temperature mixtures (LTTMs) have been investigated for this purpose. Among them, natural deep eutectic solvents (NADESs) have been proposed as cheap and renewable alternatives to ionic liquids for the synthesis of bio-based chemical building blocks. We compare herein the ability of several organic acids/choline chloride/water LTTMs to perform D-fructose dehydration to 5-hydroxymethylfurfural (5-HMF). The addition of chloride salts as well as an increased proportion of choline chloride promotes 5-HMF formation, which seems to indicate a beneficial effect of chloride anions on D-fructose dehydration. Besides improving selectivity by at least 10 %, increasing the choline chloride/acid ratio could enhance the biodegradability of the LTTMs. Unlike other acidic components, maleic and citric acids are especially selective at early D-fructose conversion. Maleic acid was the most selective acidic component among the tested chemicals, achieving an 80 % 5-HMF molar yield in 1 h at 90 °C.
科研通智能强力驱动
Strongly Powered by AbleSci AI