Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection

可穿戴计算机 计算机科学 模式 情感(语言学) 人工智能 情感计算 压力(语言学) 模态(人机交互) 水准点(测量) 机器学习 心理学 语言学 哲学 沟通 嵌入式系统 社会科学 大地测量学 社会学 地理
作者
Philip Schmidt,Attila Reiss,Robert Duerichen,Claus Marberger,Kristof Van Laerhoven
标识
DOI:10.1145/3242969.3242985
摘要

Affect recognition aims to detect a person's affective state based on observables, with the goal to e.g. improve human-computer interaction. Long-term stress is known to have severe implications on wellbeing, which call for continuous and automated stress monitoring systems. However, the affective computing community lacks commonly used standard datasets for wearable stress detection which a) provide multimodal high-quality data, and b) include multiple affective states. Therefore, we introduce WESAD, a new publicly available dataset for wearable stress and affect detection. This multimodal dataset features physiological and motion data, recorded from both a wrist- and a chest-worn device, of 15 subjects during a lab study. The following sensor modalities are included: blood volume pulse, electrocardiogram, electrodermal activity, electromyogram, respiration, body temperature, and three-axis acceleration. Moreover, the dataset bridges the gap between previous lab studies on stress and emotions, by containing three different affective states (neutral, stress, amusement). In addition, self-reports of the subjects, which were obtained using several established questionnaires, are contained in the dataset. Furthermore, a benchmark is created on the dataset, using well-known features and standard machine learning methods. Considering the three-class classification problem ( baseline vs. stress vs. amusement ), we achieved classification accuracies of up to 80%,. In the binary case ( stress vs. non-stress ), accuracies of up to 93%, were reached. Finally, we provide a detailed analysis and comparison of the two device locations ( chest vs. wrist ) as well as the different sensor modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
钱钱钱完成签到,获得积分20
1秒前
aviva完成签到,获得积分10
2秒前
2秒前
andyson666发布了新的文献求助10
3秒前
酱er完成签到,获得积分20
4秒前
5秒前
阳光发布了新的文献求助10
5秒前
lyabigale完成签到 ,获得积分10
5秒前
6秒前
风起发布了新的文献求助10
6秒前
6秒前
小迪完成签到 ,获得积分10
7秒前
7秒前
wyx完成签到,获得积分10
8秒前
幻心完成签到,获得积分10
9秒前
10秒前
ch发布了新的文献求助10
10秒前
吉星高照发布了新的文献求助10
11秒前
12秒前
14秒前
化工兔完成签到,获得积分10
15秒前
爆米花应助科研牛马采纳,获得10
15秒前
风起完成签到,获得积分20
15秒前
15秒前
文静的千秋完成签到,获得积分10
16秒前
16秒前
17秒前
接心软审稿人完成签到 ,获得积分10
17秒前
小李完成签到,获得积分10
19秒前
兴奋的万声关注了科研通微信公众号
19秒前
结实的山菡应助aviva采纳,获得10
20秒前
田様应助猪伱平安采纳,获得10
20秒前
20秒前
拖拉机完成签到 ,获得积分10
22秒前
ran发布了新的文献求助10
22秒前
Sky36001完成签到,获得积分10
24秒前
凌兰发布了新的文献求助10
25秒前
25秒前
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782