A hybrid SEM-neural network analysis of social media addiction

社会化媒体 计算机科学 人工神经网络 上瘾 构造(python库) 人工智能 神经质 样品(材料) 机器学习 心理学 人格 社会心理学 万维网 化学 色谱法 神经科学 程序设计语言
作者
Lai-Ying Leong,Teck-Soon Hew,Keng‐Boon Ooi,Voon‐Hsien Lee,Jun-Jie Hew
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:133: 296-316 被引量:149
标识
DOI:10.1016/j.eswa.2019.05.024
摘要

Social media has been a phenomenon but it is a double-edge sword that can bring about negative effects such as social media addiction. Nevertheless, very less attention has been given in unveiling the determinants of social media addiction. In this study, artificial intelligence and expert systems were applied through a hybrid SEM-artificial neural network approach to predict social media addiction. An integrated model of the Big Five Model and Uses and Gratification Theory was validated based on a sample of 615 Facebook users. Unlike existing social media studies that used SEM, in this study, we engaged a hybrid SEM-ANN approach with IPMA as the additional analysis. The new SEM-IPMA-ANN analysis is a novel methodological contribution where useful conclusion can be drawn based on not only the construct's importance but also its performance in prioritizing managerial actions. Primary focus will be given in improving the performance of constructs that exhibit huge importance with relatively low performance. Based on the normalized importance of the ANN analysis using multilayer perceptrons with feed-forward-back propagation algorithm, we found nonlinear relationships between neuroticism and social media addiction. This is a significant finding as previously only linear relationships were found. In addition, entertainment is the strongest predictor followed by agreeableness, neuroticism, hours spent and gender. The artificial neural network is able to predict social media addiction with an 86.67% accuracy. The new methodology and findings from the study will give huge impacts to the extant literature of expert systems and artificial intelligence generally and social media addiction specifically. We discussed the methodological, theoretical and practical contributions of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXx完成签到 ,获得积分10
刚刚
务实雁梅完成签到,获得积分10
1秒前
smottom完成签到,获得积分10
2秒前
格子完成签到,获得积分10
2秒前
3秒前
集典完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
可爱的函函应助木光采纳,获得10
5秒前
细心健柏完成签到 ,获得积分10
5秒前
咕噜完成签到 ,获得积分10
6秒前
小冬猫完成签到 ,获得积分10
6秒前
笨笨棒球应助佰斯特威采纳,获得50
6秒前
琅琊为刃完成签到,获得积分10
8秒前
8秒前
腐竹完成签到,获得积分10
10秒前
zjzjzjzjzj完成签到 ,获得积分10
11秒前
糖豆子完成签到,获得积分10
11秒前
12秒前
wxiao完成签到,获得积分10
12秒前
繁星与北斗完成签到,获得积分10
12秒前
13秒前
xionghaizi发布了新的文献求助10
13秒前
orixero应助听话的白易采纳,获得10
13秒前
13秒前
大齐发布了新的文献求助10
14秒前
草拟大坝完成签到 ,获得积分0
14秒前
烤鸭完成签到 ,获得积分10
15秒前
16秒前
17秒前
是玥玥啊完成签到,获得积分10
19秒前
20秒前
缓慢的蜗牛完成签到,获得积分10
20秒前
核弹发布了新的文献求助10
21秒前
夜色萨尔图完成签到 ,获得积分10
21秒前
22秒前
guoxingliu完成签到,获得积分10
23秒前
犹豫代曼完成签到,获得积分10
23秒前
背后的白山完成签到,获得积分10
23秒前
小马甲应助一个小胖子采纳,获得10
24秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953529
求助须知:如何正确求助?哪些是违规求助? 3498988
关于积分的说明 11093633
捐赠科研通 3229626
什么是DOI,文献DOI怎么找? 1785674
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470