A hybrid SEM-neural network analysis of social media addiction

社会化媒体 计算机科学 人工神经网络 上瘾 构造(python库) 人工智能 神经质 样品(材料) 机器学习 心理学 人格 社会心理学 万维网 神经科学 化学 程序设计语言 色谱法
作者
Lai-Ying Leong,Teck-Soon Hew,Keng‐Boon Ooi,Voon‐Hsien Lee,Jun-Jie Hew
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:133: 296-316 被引量:149
标识
DOI:10.1016/j.eswa.2019.05.024
摘要

Social media has been a phenomenon but it is a double-edge sword that can bring about negative effects such as social media addiction. Nevertheless, very less attention has been given in unveiling the determinants of social media addiction. In this study, artificial intelligence and expert systems were applied through a hybrid SEM-artificial neural network approach to predict social media addiction. An integrated model of the Big Five Model and Uses and Gratification Theory was validated based on a sample of 615 Facebook users. Unlike existing social media studies that used SEM, in this study, we engaged a hybrid SEM-ANN approach with IPMA as the additional analysis. The new SEM-IPMA-ANN analysis is a novel methodological contribution where useful conclusion can be drawn based on not only the construct's importance but also its performance in prioritizing managerial actions. Primary focus will be given in improving the performance of constructs that exhibit huge importance with relatively low performance. Based on the normalized importance of the ANN analysis using multilayer perceptrons with feed-forward-back propagation algorithm, we found nonlinear relationships between neuroticism and social media addiction. This is a significant finding as previously only linear relationships were found. In addition, entertainment is the strongest predictor followed by agreeableness, neuroticism, hours spent and gender. The artificial neural network is able to predict social media addiction with an 86.67% accuracy. The new methodology and findings from the study will give huge impacts to the extant literature of expert systems and artificial intelligence generally and social media addiction specifically. We discussed the methodological, theoretical and practical contributions of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuangcheng完成签到,获得积分20
刚刚
可爱的函函应助周周采纳,获得10
1秒前
我是125应助昵称采纳,获得10
1秒前
2秒前
小赵发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
情怀应助zhangscience采纳,获得10
4秒前
Doctor_Mill完成签到,获得积分10
5秒前
5秒前
思源应助学习猴采纳,获得10
5秒前
Lavendar完成签到,获得积分10
5秒前
6秒前
6秒前
8秒前
钟是一梦发布了新的文献求助10
10秒前
10秒前
YYJ25发布了新的文献求助10
10秒前
满意冷荷完成签到,获得积分10
10秒前
12秒前
所所应助侦察兵采纳,获得10
12秒前
传奇3应助小赵采纳,获得10
14秒前
www关注了科研通微信公众号
14秒前
xiaorui完成签到,获得积分10
14秒前
黎金鑫发布了新的文献求助10
16秒前
小恐龙完成签到,获得积分10
17秒前
susu发布了新的文献求助10
18秒前
看的眼睛都瞎了完成签到,获得积分10
18秒前
阿七完成签到 ,获得积分10
19秒前
麻油球完成签到,获得积分10
19秒前
万能图书馆应助Anquan采纳,获得30
20秒前
20秒前
安静元槐发布了新的文献求助10
20秒前
20秒前
wnche完成签到,获得积分10
21秒前
22秒前
阿七关注了科研通微信公众号
23秒前
23秒前
刘大米发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849