A hybrid SEM-neural network analysis of social media addiction

社会化媒体 计算机科学 人工神经网络 上瘾 构造(python库) 人工智能 神经质 样品(材料) 机器学习 心理学 人格 社会心理学 万维网 神经科学 化学 程序设计语言 色谱法
作者
Lai-Ying Leong,Teck-Soon Hew,Keng‐Boon Ooi,Voon‐Hsien Lee,Jun-Jie Hew
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:133: 296-316 被引量:149
标识
DOI:10.1016/j.eswa.2019.05.024
摘要

Social media has been a phenomenon but it is a double-edge sword that can bring about negative effects such as social media addiction. Nevertheless, very less attention has been given in unveiling the determinants of social media addiction. In this study, artificial intelligence and expert systems were applied through a hybrid SEM-artificial neural network approach to predict social media addiction. An integrated model of the Big Five Model and Uses and Gratification Theory was validated based on a sample of 615 Facebook users. Unlike existing social media studies that used SEM, in this study, we engaged a hybrid SEM-ANN approach with IPMA as the additional analysis. The new SEM-IPMA-ANN analysis is a novel methodological contribution where useful conclusion can be drawn based on not only the construct's importance but also its performance in prioritizing managerial actions. Primary focus will be given in improving the performance of constructs that exhibit huge importance with relatively low performance. Based on the normalized importance of the ANN analysis using multilayer perceptrons with feed-forward-back propagation algorithm, we found nonlinear relationships between neuroticism and social media addiction. This is a significant finding as previously only linear relationships were found. In addition, entertainment is the strongest predictor followed by agreeableness, neuroticism, hours spent and gender. The artificial neural network is able to predict social media addiction with an 86.67% accuracy. The new methodology and findings from the study will give huge impacts to the extant literature of expert systems and artificial intelligence generally and social media addiction specifically. We discussed the methodological, theoretical and practical contributions of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助kkdkg采纳,获得10
刚刚
Dr.FelixFan完成签到 ,获得积分10
刚刚
畅快的刚完成签到,获得积分10
1秒前
1秒前
缓慢的谷秋应助王提采纳,获得10
3秒前
3秒前
秀丽烨霖发布了新的文献求助50
3秒前
星空下的dreamer完成签到,获得积分10
4秒前
fvnsj完成签到,获得积分10
4秒前
科研通AI2S应助小十二采纳,获得10
4秒前
Arlo发布了新的文献求助10
4秒前
allrubbish发布了新的文献求助10
5秒前
6秒前
wanci应助乔心采纳,获得10
6秒前
幽默的冷之完成签到,获得积分10
6秒前
kkdkg完成签到,获得积分10
7秒前
zsl完成签到 ,获得积分10
9秒前
10秒前
lee完成签到,获得积分10
11秒前
14秒前
bwx完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
LXYSB发布了新的文献求助10
19秒前
峇蘭完成签到 ,获得积分10
20秒前
拼搏城发布了新的文献求助30
21秒前
21秒前
咳欧克发布了新的文献求助10
21秒前
24秒前
27秒前
如果多年后完成签到 ,获得积分10
27秒前
Arlo完成签到 ,获得积分20
29秒前
今天吃了吗完成签到,获得积分10
30秒前
30秒前
超菜发布了新的文献求助10
31秒前
31秒前
32秒前
lirongcas发布了新的文献求助10
33秒前
Leo完成签到,获得积分10
35秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165215
求助须知:如何正确求助?哪些是违规求助? 2816263
关于积分的说明 7912059
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388