Coda Wave Interferometry for Accurate Simultaneous Monitoring of Velocity and Acoustic Source Locations in Experimental Rock Physics

尾声 地震干涉测量 干涉测量 地震学 地震噪声 地震速度 地质学 声学 地震波 噪音(视频) 地球物理学 物理 光学 计算机科学 图像(数学) 人工智能
作者
Jonathan Singh,Andrew Curtis,Youqian Zhao,Alexis Cartwright‐Taylor,Ian Main
出处
期刊:Journal Of Geophysical Research: Solid Earth [Wiley]
卷期号:124 (6): 5629-5655 被引量:21
标识
DOI:10.1029/2019jb017577
摘要

Abstract In many geoscientific, material science, and engineering applications it is of importance to estimate a representative bulk seismic velocity of materials or to locate the source of recorded seismic or acoustic waves. Such estimates are necessary in order to interpret industrial seismic and earthquake seismological data, for example, in nondestructive evaluation and monitoring of structural materials, and as an input to rock physics models that predict other parameters of interest. Bulk velocity is commonly estimated in laboratories from the time of flight of the first‐arriving wave between a source and a receiver, assuming a linear raypath. In heterogeneous media, that method provides biased estimates of the bulk velocity, and of derived parameters such as temporal velocity changes or the locations of acoustic emissions. We show that coda wave interferometry (CWI) characterizes changes in the bulk properties of scattering media far more effectively on the scale of laboratory rock samples. Compared to conventional methods, CWI provides significant improvements in both accuracy and precision of estimates of velocity changes, and distances between pairs of acoustic sources, remaining accurate in the presence of background noise, and when source location and velocity perturbations occur simultaneously. CWI also allows 3‐D relative locations of clusters of acoustic emissions to be estimated using only a single sensor. We present a method to use CWI to infer changes in both P and S wave velocities individually. These innovations represent significant improvements in our ability to characterize the evolution of properties of media for a variety of applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助luyao970131采纳,获得10
刚刚
斯文败类应助iuuuuu采纳,获得10
2秒前
bbw发布了新的文献求助10
2秒前
打打应助mokano采纳,获得10
2秒前
搜集达人应助鸢尾蓝采纳,获得10
5秒前
Jasper应助虚幻赛凤采纳,获得10
7秒前
别潜然发布了新的文献求助10
8秒前
乐乐应助执着菀采纳,获得10
8秒前
9秒前
小白菜完成签到,获得积分20
10秒前
JY驳回了hzc应助
11秒前
11秒前
啵啵完成签到,获得积分10
13秒前
满意的迎南完成签到 ,获得积分10
14秒前
14秒前
积极听蓉完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
16秒前
牟翎发布了新的文献求助10
17秒前
17秒前
领导范儿应助xieyuanlong采纳,获得10
17秒前
Lonala完成签到,获得积分10
18秒前
科研通AI2S应助迅猛2002采纳,获得20
18秒前
19秒前
可乐龙猫发布了新的文献求助30
19秒前
kylin发布了新的文献求助10
20秒前
mokano发布了新的文献求助10
20秒前
柳觅夏发布了新的文献求助10
20秒前
21秒前
21秒前
浮云发布了新的文献求助10
22秒前
22秒前
FashionBoy应助奋斗的鱼采纳,获得10
23秒前
爱你的心完成签到 ,获得积分10
23秒前
yehata发布了新的文献求助10
23秒前
执着菀发布了新的文献求助10
24秒前
靓丽千筹发布了新的文献求助10
25秒前
Emper发布了新的文献求助10
26秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542