亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Detection and Classification of Sewer Defects via Hierarchical Deep Learning

人工智能 计算机科学 深度学习 模式识别(心理学) 机器学习 工程类
作者
Qian Xie,Dawei Li,Jinxuan Xu,Zhenghao Yu,Jun Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1836-1847 被引量:84
标识
DOI:10.1109/tase.2019.2900170
摘要

Video and image sources are frequently applied in the area of defect inspection in industrial community. For the recognition and classification of sewer defects, a significant number of videos and images of sewers are collected. These data are then checked by human and some traditional methods to recognize and classify the sewer defects, which is inefficient and error-prone. Previously developed features like SIFT are unable to comprehensively represent such defects. Therefore, feature representation is especially important for defect autoclassification. In this paper, we study the automatic extraction of feature representation for sewer defects via deep learning. Moreover, a complete automatic system for classifying sewer defects is proposed built on a two-level hierarchical deep convolutional neural network, which shows high performance with respect to classification accuracy. The proposed network is trained on a novel data set with over 40 000 sewer images. The system has been successfully applied in the practical production, confirming its robustness and feasibility to real-world applications. The source code and trained model are available at the project website. 1 Note to Practitioners —Automatic defect inspection has become a fundamental research topic in engineering application field. Specifically, sewer defect detection is an important measure for maintenance, renewal, and rehabilitation activities of sewer infrastructure. In the current operation procedure, all the captured videos need to be inspected by experts frame by frame to recognize defects, yielding a significant low inspection rate with a significant amount of time. Previous work has attempted to employ traditional image processing methods for automated sewer defect classification. However, these methods get poor generalization capabilities since they use pre-engineered features. In most cases, sewerage inspection companies have to hire numerous professional inspectors to do this job, thereby consuming a lot of human and material resources. To address this problem, the authors propose an automatic detection and classification method for sewer defects based on hierarchical deep learning. Demonstrated by various experiments, the designed framework achieves a high defect classification accuracy, which can be easily integrated into an automatic sewer defect inspection system. 1 https://github.com/NUAAXQ/SewerDefectDetection

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助香菜张采纳,获得10
5秒前
顾矜应助白华苍松采纳,获得10
27秒前
48秒前
wanci应助renren采纳,获得10
49秒前
54秒前
55秒前
香菜张发布了新的文献求助10
58秒前
NattyPoe完成签到,获得积分10
1分钟前
zxcvvbb1001完成签到 ,获得积分10
1分钟前
1分钟前
renren发布了新的文献求助10
1分钟前
1分钟前
Yuki完成签到 ,获得积分10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
领导范儿应助科研通管家采纳,获得30
2分钟前
2分钟前
vbnn完成签到 ,获得积分10
2分钟前
3分钟前
沙海沉戈完成签到,获得积分0
4分钟前
今后应助ceeray23采纳,获得20
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
情怀应助ceeray23采纳,获得20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
5分钟前
5分钟前
ceeray23发布了新的文献求助20
5分钟前
5分钟前
ceeray23发布了新的文献求助20
5分钟前
香菜张发布了新的文献求助10
5分钟前
6分钟前
6分钟前
znchick完成签到,获得积分10
6分钟前
BowieHuang应助Wei采纳,获得10
7分钟前
Raunio完成签到,获得积分10
7分钟前
7分钟前
souther完成签到,获得积分0
7分钟前
小王完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529261
求助须知:如何正确求助?哪些是违规求助? 4618429
关于积分的说明 14562611
捐赠科研通 4557443
什么是DOI,文献DOI怎么找? 2497532
邀请新用户注册赠送积分活动 1477742
关于科研通互助平台的介绍 1449173