Automatic Detection and Classification of Sewer Defects via Hierarchical Deep Learning

人工智能 计算机科学 深度学习 模式识别(心理学) 机器学习 工程类
作者
Qian Xie,Dawei Li,Jinxuan Xu,Zhenghao Yu,Jun Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1836-1847 被引量:84
标识
DOI:10.1109/tase.2019.2900170
摘要

Video and image sources are frequently applied in the area of defect inspection in industrial community. For the recognition and classification of sewer defects, a significant number of videos and images of sewers are collected. These data are then checked by human and some traditional methods to recognize and classify the sewer defects, which is inefficient and error-prone. Previously developed features like SIFT are unable to comprehensively represent such defects. Therefore, feature representation is especially important for defect autoclassification. In this paper, we study the automatic extraction of feature representation for sewer defects via deep learning. Moreover, a complete automatic system for classifying sewer defects is proposed built on a two-level hierarchical deep convolutional neural network, which shows high performance with respect to classification accuracy. The proposed network is trained on a novel data set with over 40 000 sewer images. The system has been successfully applied in the practical production, confirming its robustness and feasibility to real-world applications. The source code and trained model are available at the project website. 1 Note to Practitioners —Automatic defect inspection has become a fundamental research topic in engineering application field. Specifically, sewer defect detection is an important measure for maintenance, renewal, and rehabilitation activities of sewer infrastructure. In the current operation procedure, all the captured videos need to be inspected by experts frame by frame to recognize defects, yielding a significant low inspection rate with a significant amount of time. Previous work has attempted to employ traditional image processing methods for automated sewer defect classification. However, these methods get poor generalization capabilities since they use pre-engineered features. In most cases, sewerage inspection companies have to hire numerous professional inspectors to do this job, thereby consuming a lot of human and material resources. To address this problem, the authors propose an automatic detection and classification method for sewer defects based on hierarchical deep learning. Demonstrated by various experiments, the designed framework achieves a high defect classification accuracy, which can be easily integrated into an automatic sewer defect inspection system. 1 https://github.com/NUAAXQ/SewerDefectDetection
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我测你码发布了新的文献求助10
1秒前
又要起名字完成签到,获得积分10
1秒前
1秒前
1秒前
damian完成签到,获得积分10
2秒前
LiShin发布了新的文献求助10
2秒前
渝州人应助凤凰山采纳,获得10
3秒前
sweetbearm应助凤凰山采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
yizhiGao应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
顾矜应助随机起的名采纳,获得10
3秒前
NN应助科研通管家采纳,获得10
3秒前
pinging应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
yizhiGao应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得20
4秒前
小小旋风应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
敬老院N号应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
yizhiGao应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研小白应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
文献缺缺应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
调研昵称发布了新的文献求助10
5秒前
5秒前
HUYUE完成签到 ,获得积分10
6秒前
云锋完成签到,获得积分10
6秒前
奋斗战斗机完成签到,获得积分10
7秒前
SYLH应助干秋白采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794