Automatic Detection and Classification of Sewer Defects via Hierarchical Deep Learning

人工智能 计算机科学 深度学习 模式识别(心理学) 机器学习 工程类
作者
Qian Xie,Dawei Li,Jinxuan Xu,Zhenghao Yu,Jun Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1836-1847 被引量:84
标识
DOI:10.1109/tase.2019.2900170
摘要

Video and image sources are frequently applied in the area of defect inspection in industrial community. For the recognition and classification of sewer defects, a significant number of videos and images of sewers are collected. These data are then checked by human and some traditional methods to recognize and classify the sewer defects, which is inefficient and error-prone. Previously developed features like SIFT are unable to comprehensively represent such defects. Therefore, feature representation is especially important for defect autoclassification. In this paper, we study the automatic extraction of feature representation for sewer defects via deep learning. Moreover, a complete automatic system for classifying sewer defects is proposed built on a two-level hierarchical deep convolutional neural network, which shows high performance with respect to classification accuracy. The proposed network is trained on a novel data set with over 40 000 sewer images. The system has been successfully applied in the practical production, confirming its robustness and feasibility to real-world applications. The source code and trained model are available at the project website. 1 Note to Practitioners —Automatic defect inspection has become a fundamental research topic in engineering application field. Specifically, sewer defect detection is an important measure for maintenance, renewal, and rehabilitation activities of sewer infrastructure. In the current operation procedure, all the captured videos need to be inspected by experts frame by frame to recognize defects, yielding a significant low inspection rate with a significant amount of time. Previous work has attempted to employ traditional image processing methods for automated sewer defect classification. However, these methods get poor generalization capabilities since they use pre-engineered features. In most cases, sewerage inspection companies have to hire numerous professional inspectors to do this job, thereby consuming a lot of human and material resources. To address this problem, the authors propose an automatic detection and classification method for sewer defects based on hierarchical deep learning. Demonstrated by various experiments, the designed framework achieves a high defect classification accuracy, which can be easily integrated into an automatic sewer defect inspection system. 1 https://github.com/NUAAXQ/SewerDefectDetection
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羲月完成签到,获得积分10
1秒前
1秒前
张同学发布了新的文献求助10
2秒前
小诗发布了新的文献求助10
2秒前
莎莎发布了新的文献求助10
2秒前
3秒前
_蝴蝶小姐发布了新的文献求助10
3秒前
小二郎应助RiziaJahanRiza采纳,获得10
3秒前
秀丽的犀牛完成签到,获得积分10
4秒前
Flz完成签到,获得积分20
4秒前
科研通AI5应助猫猫叽丫丫采纳,获得10
4秒前
5秒前
Zhao发布了新的文献求助10
5秒前
Ava应助JK采纳,获得10
5秒前
chcmuer发布了新的文献求助10
5秒前
酷炫皮皮虾完成签到,获得积分10
7秒前
qq发布了新的文献求助10
8秒前
8秒前
大盘菜发布了新的文献求助10
8秒前
zhonglv7应助只只采纳,获得10
8秒前
深情安青应助ad采纳,获得10
8秒前
宁阿霜发布了新的文献求助20
8秒前
小超发布了新的文献求助10
8秒前
英吉利25发布了新的文献求助10
8秒前
小艾完成签到 ,获得积分10
8秒前
杨旸发布了新的文献求助30
8秒前
ding应助坚强的听枫采纳,获得10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
天天快乐应助夏至未至采纳,获得10
10秒前
Gzh_NJ发布了新的文献求助10
10秒前
hy完成签到,获得积分10
10秒前
11秒前
古哥完成签到,获得积分10
11秒前
汉堡包应助归仔采纳,获得10
11秒前
乐观短靴发布了新的文献求助10
12秒前
12秒前
DW123完成签到,获得积分10
12秒前
浮游应助qingchidue采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885652
求助须知:如何正确求助?哪些是违规求助? 4170459
关于积分的说明 12941799
捐赠科研通 3931212
什么是DOI,文献DOI怎么找? 2156914
邀请新用户注册赠送积分活动 1175326
关于科研通互助平台的介绍 1079935