Automatic Detection and Classification of Sewer Defects via Hierarchical Deep Learning

人工智能 计算机科学 深度学习 模式识别(心理学) 机器学习 工程类
作者
Qian Xie,Dawei Li,Jinxuan Xu,Zhenghao Yu,Jun Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1836-1847 被引量:84
标识
DOI:10.1109/tase.2019.2900170
摘要

Video and image sources are frequently applied in the area of defect inspection in industrial community. For the recognition and classification of sewer defects, a significant number of videos and images of sewers are collected. These data are then checked by human and some traditional methods to recognize and classify the sewer defects, which is inefficient and error-prone. Previously developed features like SIFT are unable to comprehensively represent such defects. Therefore, feature representation is especially important for defect autoclassification. In this paper, we study the automatic extraction of feature representation for sewer defects via deep learning. Moreover, a complete automatic system for classifying sewer defects is proposed built on a two-level hierarchical deep convolutional neural network, which shows high performance with respect to classification accuracy. The proposed network is trained on a novel data set with over 40 000 sewer images. The system has been successfully applied in the practical production, confirming its robustness and feasibility to real-world applications. The source code and trained model are available at the project website. 1 Note to Practitioners —Automatic defect inspection has become a fundamental research topic in engineering application field. Specifically, sewer defect detection is an important measure for maintenance, renewal, and rehabilitation activities of sewer infrastructure. In the current operation procedure, all the captured videos need to be inspected by experts frame by frame to recognize defects, yielding a significant low inspection rate with a significant amount of time. Previous work has attempted to employ traditional image processing methods for automated sewer defect classification. However, these methods get poor generalization capabilities since they use pre-engineered features. In most cases, sewerage inspection companies have to hire numerous professional inspectors to do this job, thereby consuming a lot of human and material resources. To address this problem, the authors propose an automatic detection and classification method for sewer defects based on hierarchical deep learning. Demonstrated by various experiments, the designed framework achieves a high defect classification accuracy, which can be easily integrated into an automatic sewer defect inspection system. 1 https://github.com/NUAAXQ/SewerDefectDetection
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术小白w完成签到 ,获得积分10
1秒前
小高完成签到 ,获得积分10
2秒前
小二郎应助aa121599采纳,获得10
2秒前
佳敏完成签到,获得积分20
2秒前
2秒前
benmao_mogu完成签到,获得积分10
2秒前
Xxxzzq发布了新的文献求助10
2秒前
高挑的牛青完成签到,获得积分10
3秒前
ccl发布了新的文献求助10
3秒前
猫头鹰发布了新的文献求助10
4秒前
czh发布了新的文献求助30
6秒前
科研通AI6应助吕玥函采纳,获得10
6秒前
zrx15986完成签到,获得积分10
6秒前
You完成签到 ,获得积分10
7秒前
我要发SCI完成签到 ,获得积分10
9秒前
754完成签到,获得积分10
10秒前
Dr Niu应助猫头鹰采纳,获得10
11秒前
14秒前
三七完成签到,获得积分10
15秒前
儒雅的豁完成签到,获得积分10
15秒前
15秒前
炫炫炫发布了新的文献求助30
17秒前
踏实绮露完成签到 ,获得积分10
17秒前
灰灰成长中完成签到,获得积分10
18秒前
佳敏发布了新的文献求助10
19秒前
科研通AI2S应助xxx采纳,获得10
21秒前
木木发布了新的文献求助10
22秒前
勤恳的曼凡完成签到 ,获得积分10
22秒前
aojl90完成签到,获得积分10
25秒前
科研通AI5应助yangyang采纳,获得10
25秒前
Orange应助CX330采纳,获得10
25秒前
劉jLJH发布了新的文献求助10
26秒前
27秒前
27秒前
27秒前
111完成签到 ,获得积分10
28秒前
orixero应助ccl采纳,获得10
28秒前
28秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4557986
求助须知:如何正确求助?哪些是违规求助? 3985120
关于积分的说明 12337955
捐赠科研通 3655518
什么是DOI,文献DOI怎么找? 2013851
邀请新用户注册赠送积分活动 1048667
科研通“疑难数据库(出版商)”最低求助积分说明 937092