Automatic Detection and Classification of Sewer Defects via Hierarchical Deep Learning

人工智能 计算机科学 深度学习 模式识别(心理学) 机器学习 工程类
作者
Qian Xie,Dawei Li,Jinxuan Xu,Zhenghao Yu,Jun Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1836-1847 被引量:84
标识
DOI:10.1109/tase.2019.2900170
摘要

Video and image sources are frequently applied in the area of defect inspection in industrial community. For the recognition and classification of sewer defects, a significant number of videos and images of sewers are collected. These data are then checked by human and some traditional methods to recognize and classify the sewer defects, which is inefficient and error-prone. Previously developed features like SIFT are unable to comprehensively represent such defects. Therefore, feature representation is especially important for defect autoclassification. In this paper, we study the automatic extraction of feature representation for sewer defects via deep learning. Moreover, a complete automatic system for classifying sewer defects is proposed built on a two-level hierarchical deep convolutional neural network, which shows high performance with respect to classification accuracy. The proposed network is trained on a novel data set with over 40 000 sewer images. The system has been successfully applied in the practical production, confirming its robustness and feasibility to real-world applications. The source code and trained model are available at the project website. 1 Note to Practitioners —Automatic defect inspection has become a fundamental research topic in engineering application field. Specifically, sewer defect detection is an important measure for maintenance, renewal, and rehabilitation activities of sewer infrastructure. In the current operation procedure, all the captured videos need to be inspected by experts frame by frame to recognize defects, yielding a significant low inspection rate with a significant amount of time. Previous work has attempted to employ traditional image processing methods for automated sewer defect classification. However, these methods get poor generalization capabilities since they use pre-engineered features. In most cases, sewerage inspection companies have to hire numerous professional inspectors to do this job, thereby consuming a lot of human and material resources. To address this problem, the authors propose an automatic detection and classification method for sewer defects based on hierarchical deep learning. Demonstrated by various experiments, the designed framework achieves a high defect classification accuracy, which can be easily integrated into an automatic sewer defect inspection system. 1 https://github.com/NUAAXQ/SewerDefectDetection
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pt发布了新的文献求助10
2秒前
5秒前
迷路以蓝完成签到,获得积分10
7秒前
Sheep完成签到,获得积分10
8秒前
8秒前
8秒前
CodeCraft应助SUPERDOUBLE采纳,获得10
9秒前
翕然完成签到,获得积分10
9秒前
方安发布了新的文献求助10
9秒前
nc关注了科研通微信公众号
10秒前
11秒前
12秒前
ding应助wufabini采纳,获得20
12秒前
12秒前
酷波er应助蜗牛星星采纳,获得10
13秒前
LJT发布了新的文献求助10
13秒前
三更笔舞发布了新的文献求助10
15秒前
16秒前
无花果应助方安采纳,获得10
16秒前
1027完成签到 ,获得积分10
17秒前
lxz发布了新的文献求助10
19秒前
活力寻菱发布了新的文献求助10
19秒前
19秒前
20秒前
xiaoze完成签到,获得积分10
20秒前
21秒前
超级七七发布了新的文献求助10
21秒前
22秒前
大个应助活力寻菱采纳,获得10
22秒前
蜗牛星星发布了新的文献求助10
23秒前
yms发布了新的文献求助10
24秒前
dingm2完成签到 ,获得积分10
24秒前
浅尝离白应助科研通管家采纳,获得30
25秒前
魏佳阁应助科研通管家采纳,获得10
25秒前
浅尝离白应助科研通管家采纳,获得30
25秒前
慕青应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153361
求助须知:如何正确求助?哪些是违规求助? 2804608
关于积分的说明 7860306
捐赠科研通 2462547
什么是DOI,文献DOI怎么找? 1310806
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794