Automatic Detection and Classification of Sewer Defects via Hierarchical Deep Learning

人工智能 计算机科学 深度学习 模式识别(心理学) 机器学习 工程类
作者
Qian Xie,Dawei Li,Jinxuan Xu,Zhenghao Yu,Jun Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1836-1847 被引量:84
标识
DOI:10.1109/tase.2019.2900170
摘要

Video and image sources are frequently applied in the area of defect inspection in industrial community. For the recognition and classification of sewer defects, a significant number of videos and images of sewers are collected. These data are then checked by human and some traditional methods to recognize and classify the sewer defects, which is inefficient and error-prone. Previously developed features like SIFT are unable to comprehensively represent such defects. Therefore, feature representation is especially important for defect autoclassification. In this paper, we study the automatic extraction of feature representation for sewer defects via deep learning. Moreover, a complete automatic system for classifying sewer defects is proposed built on a two-level hierarchical deep convolutional neural network, which shows high performance with respect to classification accuracy. The proposed network is trained on a novel data set with over 40 000 sewer images. The system has been successfully applied in the practical production, confirming its robustness and feasibility to real-world applications. The source code and trained model are available at the project website. 1 Note to Practitioners —Automatic defect inspection has become a fundamental research topic in engineering application field. Specifically, sewer defect detection is an important measure for maintenance, renewal, and rehabilitation activities of sewer infrastructure. In the current operation procedure, all the captured videos need to be inspected by experts frame by frame to recognize defects, yielding a significant low inspection rate with a significant amount of time. Previous work has attempted to employ traditional image processing methods for automated sewer defect classification. However, these methods get poor generalization capabilities since they use pre-engineered features. In most cases, sewerage inspection companies have to hire numerous professional inspectors to do this job, thereby consuming a lot of human and material resources. To address this problem, the authors propose an automatic detection and classification method for sewer defects based on hierarchical deep learning. Demonstrated by various experiments, the designed framework achieves a high defect classification accuracy, which can be easily integrated into an automatic sewer defect inspection system. 1 https://github.com/NUAAXQ/SewerDefectDetection

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助须尽欢采纳,获得10
刚刚
1秒前
做科研的小施同学完成签到,获得积分10
1秒前
1秒前
2秒前
飘逸的鸿煊完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
端庄一刀完成签到 ,获得积分10
3秒前
kingnb发布了新的文献求助10
3秒前
hrbykdxly完成签到,获得积分10
3秒前
英俊的铭应助害羞含雁采纳,获得10
3秒前
4秒前
张国栋发布了新的文献求助10
4秒前
老年人完成签到,获得积分10
4秒前
糖果铺子发布了新的文献求助10
5秒前
6秒前
核动力驴应助慈祥的傲安采纳,获得10
6秒前
随风发布了新的文献求助10
6秒前
研友_Z6G2D8发布了新的文献求助10
6秒前
赘婿应助优美的立诚采纳,获得10
7秒前
Echo1128完成签到 ,获得积分10
7秒前
8秒前
Jing完成签到 ,获得积分10
8秒前
龘龘完成签到,获得积分10
9秒前
紫津发布了新的文献求助10
9秒前
上官若男应助vince采纳,获得10
9秒前
ding应助牂牂采纳,获得10
10秒前
10秒前
小贝壳要快乐吖完成签到,获得积分10
11秒前
xxl完成签到,获得积分10
12秒前
随风完成签到,获得积分10
13秒前
李爱国应助心灵美的大山采纳,获得10
13秒前
13秒前
14秒前
赘婿应助pinecone采纳,获得10
14秒前
冬至完成签到,获得积分10
14秒前
虚生花完成签到,获得积分10
15秒前
15秒前
zoushiyi发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488