Automatic Detection and Classification of Sewer Defects via Hierarchical Deep Learning

人工智能 计算机科学 深度学习 模式识别(心理学) 机器学习 工程类
作者
Qian Xie,Dawei Li,Jinxuan Xu,Zhenghao Yu,Jun Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1836-1847 被引量:84
标识
DOI:10.1109/tase.2019.2900170
摘要

Video and image sources are frequently applied in the area of defect inspection in industrial community. For the recognition and classification of sewer defects, a significant number of videos and images of sewers are collected. These data are then checked by human and some traditional methods to recognize and classify the sewer defects, which is inefficient and error-prone. Previously developed features like SIFT are unable to comprehensively represent such defects. Therefore, feature representation is especially important for defect autoclassification. In this paper, we study the automatic extraction of feature representation for sewer defects via deep learning. Moreover, a complete automatic system for classifying sewer defects is proposed built on a two-level hierarchical deep convolutional neural network, which shows high performance with respect to classification accuracy. The proposed network is trained on a novel data set with over 40 000 sewer images. The system has been successfully applied in the practical production, confirming its robustness and feasibility to real-world applications. The source code and trained model are available at the project website. 1 Note to Practitioners —Automatic defect inspection has become a fundamental research topic in engineering application field. Specifically, sewer defect detection is an important measure for maintenance, renewal, and rehabilitation activities of sewer infrastructure. In the current operation procedure, all the captured videos need to be inspected by experts frame by frame to recognize defects, yielding a significant low inspection rate with a significant amount of time. Previous work has attempted to employ traditional image processing methods for automated sewer defect classification. However, these methods get poor generalization capabilities since they use pre-engineered features. In most cases, sewerage inspection companies have to hire numerous professional inspectors to do this job, thereby consuming a lot of human and material resources. To address this problem, the authors propose an automatic detection and classification method for sewer defects based on hierarchical deep learning. Demonstrated by various experiments, the designed framework achieves a high defect classification accuracy, which can be easily integrated into an automatic sewer defect inspection system. 1 https://github.com/NUAAXQ/SewerDefectDetection
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
6秒前
6秒前
6秒前
ZZZ发布了新的文献求助10
7秒前
ding应助loooooong采纳,获得10
9秒前
研友_VZG7GZ应助笨笨山芙采纳,获得10
10秒前
叶叶完成签到,获得积分10
10秒前
完美世界应助海德堡采纳,获得10
11秒前
Yzz完成签到,获得积分10
12秒前
13秒前
科目三应助二三采纳,获得10
14秒前
小熊饼干完成签到,获得积分10
15秒前
皮皮虾完成签到,获得积分10
15秒前
打打应助龙共采纳,获得10
16秒前
16秒前
WuchangI完成签到,获得积分10
17秒前
18秒前
佳佳应助huyz采纳,获得10
18秒前
yang完成签到,获得积分10
19秒前
勤劳糜发布了新的文献求助10
20秒前
及禾应助青菜采纳,获得10
20秒前
acb发布了新的文献求助10
21秒前
21秒前
huyz发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
24秒前
loooooong发布了新的文献求助10
24秒前
25秒前
专注棒棒糖完成签到 ,获得积分10
25秒前
雪花完成签到 ,获得积分10
27秒前
nn发布了新的文献求助10
27秒前
暴龙战士图图完成签到,获得积分10
28秒前
二三发布了新的文献求助10
28秒前
曾珍发布了新的文献求助10
28秒前
30秒前
怕黑的归尘关注了科研通微信公众号
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343