Machine learning aided phase retrieval algorithm for beam splitting with an LCoS-SLM

算法 计算机科学 硅上液晶 傅里叶变换 相位恢复 相(物质) 梁(结构) 人工智能 光学 液晶显示器 数学 量子力学 操作系统 物理 数学分析
作者
Dmitriy Mikhaylov,Baifan Zhou,Thomas Kiedrowski,Ralf Mikut,Andrés Fabián Lasagni
标识
DOI:10.1117/12.2508673
摘要

Liquid crystal on silicon phase-only spatial light modulators are widely used for the generation of multi-spot patterns. The phase distribution in the modulator plane, corresponding to the target multi-spot intensity distribution in the focal plane, is calculated by means of the so-called phase retrieval algorithms. Due to deviations of the real optical setup from the ideal model, these algorithms often do not achieve the desired power distribution accuracy within the multi-spot patterns. In this study, we present a novel method for generating high quality multi-spot patterns even in the presence of optical system disturbances. The standard Iterative Fourier Transform Algorithm is extended by means of machine learning methods combined with an open camera feedback loop. The machine learning algorithm is used to predict the mapping function between the desired and the measured multi-spot beam profiles. The problem of generation of multispot patterns is divided into three complexity levels. Due to distinct parameter structures, each of the complexity levels requires differing solution approaches, particularly differing machine learning algorithms. This relation is discussed in detail eventually providing a solution for the simplest case of beam splitter pattern generation. Solutions for more complex problems are also suggested. The approach is validated, whereby one machine learning method is successfully implemented and tested experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
chillin发布了新的文献求助10
2秒前
zhui发布了新的文献求助10
2秒前
薪炭林完成签到,获得积分10
3秒前
Rrr发布了新的文献求助10
3秒前
3秒前
SCISSH完成签到 ,获得积分10
3秒前
FEI发布了新的文献求助10
4秒前
科研通AI5应助奔奔采纳,获得10
5秒前
星辰大海应助八八采纳,获得20
5秒前
gaga发布了新的文献求助10
5秒前
木子加y发布了新的文献求助10
5秒前
大大泡泡完成签到,获得积分10
6秒前
852应助zhui采纳,获得10
7秒前
芒果发布了新的文献求助10
7秒前
8秒前
前百年253完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
xiaoguai完成签到 ,获得积分10
10秒前
甜蜜晓绿发布了新的文献求助10
12秒前
12秒前
Bruce发布了新的文献求助10
12秒前
13秒前
13秒前
MYhang完成签到,获得积分10
13秒前
wxd发布了新的文献求助10
15秒前
15秒前
哈哈发布了新的文献求助10
16秒前
16秒前
西哈哈发布了新的文献求助10
16秒前
科研通AI5应助lili采纳,获得10
16秒前
郑嘻嘻完成签到,获得积分10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794