生物催化
酶
化学
定向进化
脂肪酶
QM/毫米
蛋白质工程
从头算
催化作用
合理设计
计算化学
分子动力学
组合化学
立体化学
生物化学
有机化学
纳米技术
材料科学
反应机理
突变体
基因
作者
Zexin Zhao,Dongming Lan,Xiyu Tan,Frank Hollmann,Uwe T. Bornscheuer,Bo Yang,Yonghua Wang
出处
期刊:ACS Catalysis
[American Chemical Society]
日期:2019-02-28
卷期号:9 (4): 2916-2921
被引量:21
标识
DOI:10.1021/acscatal.8b04948
摘要
H2O2, is an attractive oxidant for synthetic chemistry, especially if activated as percarboxylic acid. H2O2, however, is also a potent inactivator of enzymes. Protein engineering efforts to improve enzyme resistance against H2O2 in the past have mostly focused on tedious probabilistic directed evolution approaches. Here we demonstrate that a rational approach combining multiscale MD simulations and Born–Oppenheimer ab initio QM/MM MD simulations is an efficient approach to rapidly identify improved enzyme variants. Thus, the lipase from Penicillium camembertii was redesigned with a single mutation (I260R), leading to drastic improvements in H2O2 resistance while maintaining the catalytic activity. Also the extension of this methodology to other enzymes is demonstrated.
科研通智能强力驱动
Strongly Powered by AbleSci AI