Extracting chemical-protein interactions from biomedical literature via granular attention based recurrent neural networks

计算机科学 人工神经网络 人工智能
作者
Hongbin Lü,Lishuang Li,Xinyu He,Yang Liu,Anqiao Zhou
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:176: 61-68 被引量:13
标识
DOI:10.1016/j.cmpb.2019.04.020
摘要

The extraction of interactions between chemicals and proteins from biomedical literature is important for many biomedical tasks such as drug discovery and precision medicine. In the existing systems, the methods achieving competitive results are combined of several models or implemented in multi-stage, and they are challenged by high cost because numerous external features are employed. These problems can be avoided by deep learning algorithms, but the performance of the deep learning based models is limited by inadequate exploration of the information. Our goal is to devise a system to improve the performance of the automatic extraction between chemical entities and protein entities from biomedical literature.In this paper, we propose a model based on recurrent neural networks integrating granular attention mechanism. The granular attention can explore the inner information of the context vectors, which are represented in multiple dimensions that play different roles in the extraction of the interactions. Furthermore, we employ Swish activation function in the neural networks for the chemical-protein interactions extraction task for the first time.The proposed method is evaluated on BioCreative VI chemical-protein track test corpus. The experimental results show that this method achieves an F-score of 65.14%, which is 1.04% higher than the state-of-the-art system.The model synthesizing recurrent neural networks and granular attention mechanism, exploring the inner information of the context vectors, can improve the extraction performance without extra hand-crafted features. The experimental results demonstrate that the proposed model is promising for further study on the interaction extraction between chemicals and proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jwhardaway发布了新的文献求助10
1秒前
阿白发布了新的文献求助10
2秒前
2秒前
3秒前
豪豪完成签到,获得积分10
3秒前
zhang发布了新的文献求助10
4秒前
星辰大海应助111111111采纳,获得10
4秒前
大个应助高高的网络采纳,获得10
5秒前
winter发布了新的文献求助10
5秒前
5秒前
白华苍松发布了新的文献求助20
6秒前
8秒前
雨季发布了新的文献求助10
8秒前
bigroll完成签到,获得积分10
8秒前
双青豆完成签到 ,获得积分10
8秒前
彭于晏应助why采纳,获得10
10秒前
clare发布了新的文献求助10
11秒前
xye发布了新的文献求助10
11秒前
你头发乱了喔完成签到,获得积分10
11秒前
阿波罗的太阳完成签到,获得积分10
14秒前
14秒前
Shao_Jq完成签到 ,获得积分10
15秒前
PiggyBrother完成签到 ,获得积分10
15秒前
15秒前
阿白完成签到 ,获得积分10
17秒前
沥青路上漫步的孔雀完成签到,获得积分10
17秒前
18秒前
18秒前
20秒前
20秒前
Gtpangda完成签到 ,获得积分10
20秒前
20秒前
可爱的函函应助hhh采纳,获得10
20秒前
刘欢发布了新的文献求助10
20秒前
Miyazonox发布了新的文献求助10
20秒前
Abi发布了新的文献求助10
21秒前
Wyd2000应助圆圆的波仔采纳,获得10
21秒前
22秒前
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792710
关于积分的说明 7803941
捐赠科研通 2448986
什么是DOI,文献DOI怎么找? 1303011
科研通“疑难数据库(出版商)”最低求助积分说明 626717
版权声明 601244