亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extracting chemical-protein interactions from biomedical literature via granular attention based recurrent neural networks

计算机科学 人工神经网络 人工智能
作者
Hongbin Lü,Lishuang Li,Xinyu He,Yang Liu,Anqiao Zhou
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:176: 61-68 被引量:13
标识
DOI:10.1016/j.cmpb.2019.04.020
摘要

The extraction of interactions between chemicals and proteins from biomedical literature is important for many biomedical tasks such as drug discovery and precision medicine. In the existing systems, the methods achieving competitive results are combined of several models or implemented in multi-stage, and they are challenged by high cost because numerous external features are employed. These problems can be avoided by deep learning algorithms, but the performance of the deep learning based models is limited by inadequate exploration of the information. Our goal is to devise a system to improve the performance of the automatic extraction between chemical entities and protein entities from biomedical literature.In this paper, we propose a model based on recurrent neural networks integrating granular attention mechanism. The granular attention can explore the inner information of the context vectors, which are represented in multiple dimensions that play different roles in the extraction of the interactions. Furthermore, we employ Swish activation function in the neural networks for the chemical-protein interactions extraction task for the first time.The proposed method is evaluated on BioCreative VI chemical-protein track test corpus. The experimental results show that this method achieves an F-score of 65.14%, which is 1.04% higher than the state-of-the-art system.The model synthesizing recurrent neural networks and granular attention mechanism, exploring the inner information of the context vectors, can improve the extraction performance without extra hand-crafted features. The experimental results demonstrate that the proposed model is promising for further study on the interaction extraction between chemicals and proteins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
奋斗的小研完成签到,获得积分10
13秒前
里昂义务发布了新的文献求助30
17秒前
31秒前
Yuanyuan发布了新的文献求助10
36秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
科研通AI6.1应助毛毛采纳,获得10
40秒前
42秒前
1分钟前
1分钟前
老石完成签到 ,获得积分10
1分钟前
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
1分钟前
朝雪关注了科研通微信公众号
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
朝雪完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
arniu2008完成签到,获得积分20
3分钟前
科研通AI6.1应助曾经问雁采纳,获得30
3分钟前
3分钟前
BowieHuang应助arniu2008采纳,获得10
3分钟前
sophy完成签到,获得积分20
3分钟前
在喝咖啡ing完成签到,获得积分10
3分钟前
Yuanyuan发布了新的文献求助10
3分钟前
简单发布了新的文献求助20
3分钟前
lovelife完成签到,获得积分10
4分钟前
qsxy发布了新的文献求助100
4分钟前
老老熊完成签到,获得积分10
4分钟前
4分钟前
qsxy完成签到,获得积分10
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
4分钟前
小刘小刘发布了新的文献求助80
4分钟前
CodeCraft应助痴情的诗槐采纳,获得10
5分钟前
简单完成签到,获得积分20
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788771
求助须知:如何正确求助?哪些是违规求助? 5711930
关于积分的说明 15473908
捐赠科研通 4916776
什么是DOI,文献DOI怎么找? 2646575
邀请新用户注册赠送积分活动 1594240
关于科研通互助平台的介绍 1548666