Extracting chemical-protein interactions from biomedical literature via granular attention based recurrent neural networks

计算机科学 人工神经网络 人工智能
作者
Hongbin Lü,Lishuang Li,Xinyu He,Yang Liu,Anqiao Zhou
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:176: 61-68 被引量:13
标识
DOI:10.1016/j.cmpb.2019.04.020
摘要

The extraction of interactions between chemicals and proteins from biomedical literature is important for many biomedical tasks such as drug discovery and precision medicine. In the existing systems, the methods achieving competitive results are combined of several models or implemented in multi-stage, and they are challenged by high cost because numerous external features are employed. These problems can be avoided by deep learning algorithms, but the performance of the deep learning based models is limited by inadequate exploration of the information. Our goal is to devise a system to improve the performance of the automatic extraction between chemical entities and protein entities from biomedical literature.In this paper, we propose a model based on recurrent neural networks integrating granular attention mechanism. The granular attention can explore the inner information of the context vectors, which are represented in multiple dimensions that play different roles in the extraction of the interactions. Furthermore, we employ Swish activation function in the neural networks for the chemical-protein interactions extraction task for the first time.The proposed method is evaluated on BioCreative VI chemical-protein track test corpus. The experimental results show that this method achieves an F-score of 65.14%, which is 1.04% higher than the state-of-the-art system.The model synthesizing recurrent neural networks and granular attention mechanism, exploring the inner information of the context vectors, can improve the extraction performance without extra hand-crafted features. The experimental results demonstrate that the proposed model is promising for further study on the interaction extraction between chemicals and proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
dong应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
英姑应助科研通管家采纳,获得10
2秒前
LJ发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
HY完成签到,获得积分10
4秒前
Loooong发布了新的文献求助10
4秒前
yy完成签到,获得积分10
4秒前
狂野忆文发布了新的文献求助10
5秒前
abc完成签到,获得积分10
6秒前
狂野忆文发布了新的文献求助10
6秒前
狂野忆文发布了新的文献求助10
6秒前
狂野忆文发布了新的文献求助10
6秒前
狂野忆文发布了新的文献求助10
6秒前
狂野忆文发布了新的文献求助10
6秒前
狂野忆文发布了新的文献求助10
6秒前
狂野忆文发布了新的文献求助10
6秒前
狂野忆文发布了新的文献求助10
6秒前
狂野忆文发布了新的文献求助10
6秒前
狂野忆文发布了新的文献求助10
6秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027