Deep Learning for Hyperspectral Image Classification: An Overview

模式识别(心理学) 上下文图像分类 卷积神经网络 人工神经网络 支持向量机 图像(数学) 多光谱图像 特征(语言学)
作者
Shutao Li,Weiwei Song,Leyuan Fang,Yushi Chen,Pedram Ghamisi,Jon Atli Benediktsson
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (9): 6690-6709 被引量:335
标识
DOI:10.1109/tgrs.2019.2907932
摘要

Hyperspectral image (HSI) classification has become a hot topic in the field of remote sensing. In general, the complex characteristics of hyperspectral data make the accurate classification of such data challenging for traditional machine learning methods. In addition, hyperspectral imaging often deals with an inherently nonlinear relation between the captured spectral information and the corresponding materials. In recent years, deep learning has been recognized as a powerful feature-extraction tool to effectively address nonlinear problems and widely used in a number of image processing tasks. Motivated by those successful applications, deep learning has also been introduced to classify HSIs and demonstrated good performance. This survey paper presents a systematic review of deep learning-based HSI classification literatures and compares several strategies for this topic. Specifically, we first summarize the main challenges of HSI classification which cannot be effectively overcome by traditional machine learning methods, and also introduce the advantages of deep learning to handle these problems. Then, we build a framework that divides the corresponding works into spectral-feature networks, spatial-feature networks, and spectral–spatial-feature networks to systematically review the recent achievements in deep learning-based HSI classification. In addition, considering the fact that available training samples in the remote sensing field are usually very limited and training deep networks require a large number of samples, we include some strategies to improve classification performance, which can provide some guidelines for future studies on this topic. Finally, several representative deep learning-based classification methods are conducted on real HSIs in our experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ye发布了新的文献求助20
刚刚
1秒前
斯文败类应助ljlcyx采纳,获得10
1秒前
充电宝应助悲凉的艳采纳,获得10
1秒前
1秒前
可靠的咖啡完成签到,获得积分10
2秒前
2秒前
cx发布了新的文献求助30
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
3秒前
juziyaya应助科研通管家采纳,获得10
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
zedmaster完成签到,获得积分10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
5秒前
嘟嘟金子发布了新的文献求助100
5秒前
Destiny完成签到,获得积分20
5秒前
dudu发布了新的文献求助10
6秒前
ZZ完成签到,获得积分10
6秒前
8秒前
8秒前
LO7pM2发布了新的文献求助30
8秒前
8秒前
二十四桥明月夜完成签到,获得积分20
8秒前
Lone完成签到,获得积分10
9秒前
9秒前
9秒前
小熊完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
呵呵哒发布了新的文献求助10
11秒前
大模型应助crystaler采纳,获得10
12秒前
xiaowang完成签到,获得积分10
12秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655