已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning for Hyperspectral Image Classification: An Overview

模式识别(心理学) 上下文图像分类 卷积神经网络 人工神经网络 支持向量机 图像(数学) 多光谱图像 特征(语言学)
作者
Shutao Li,Weiwei Song,Leyuan Fang,Yushi Chen,Pedram Ghamisi,Jon Atli Benediktsson
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (9): 6690-6709 被引量:335
标识
DOI:10.1109/tgrs.2019.2907932
摘要

Hyperspectral image (HSI) classification has become a hot topic in the field of remote sensing. In general, the complex characteristics of hyperspectral data make the accurate classification of such data challenging for traditional machine learning methods. In addition, hyperspectral imaging often deals with an inherently nonlinear relation between the captured spectral information and the corresponding materials. In recent years, deep learning has been recognized as a powerful feature-extraction tool to effectively address nonlinear problems and widely used in a number of image processing tasks. Motivated by those successful applications, deep learning has also been introduced to classify HSIs and demonstrated good performance. This survey paper presents a systematic review of deep learning-based HSI classification literatures and compares several strategies for this topic. Specifically, we first summarize the main challenges of HSI classification which cannot be effectively overcome by traditional machine learning methods, and also introduce the advantages of deep learning to handle these problems. Then, we build a framework that divides the corresponding works into spectral-feature networks, spatial-feature networks, and spectral–spatial-feature networks to systematically review the recent achievements in deep learning-based HSI classification. In addition, considering the fact that available training samples in the remote sensing field are usually very limited and training deep networks require a large number of samples, we include some strategies to improve classification performance, which can provide some guidelines for future studies on this topic. Finally, several representative deep learning-based classification methods are conducted on real HSIs in our experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大家好发布了新的文献求助10
1秒前
Owen应助董二千采纳,获得10
4秒前
大模型应助小巧谷波采纳,获得100
6秒前
科目三应助科研通管家采纳,获得10
8秒前
zhongu应助科研通管家采纳,获得10
8秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
阿强完成签到,获得积分10
10秒前
12秒前
13秒前
啊哈哈完成签到,获得积分10
15秒前
17秒前
18秒前
大家好发布了新的文献求助10
21秒前
徐徐发布了新的文献求助10
22秒前
22秒前
22秒前
GIA完成签到,获得积分10
23秒前
赵哲完成签到 ,获得积分10
27秒前
27秒前
恋雅颖月发布了新的文献求助10
27秒前
17878362发布了新的文献求助10
29秒前
恰克发布了新的文献求助10
31秒前
32秒前
32秒前
1123发布了新的文献求助10
33秒前
33秒前
33秒前
34秒前
共享精神应助fj采纳,获得10
34秒前
38秒前
董二千发布了新的文献求助10
38秒前
mg完成签到 ,获得积分10
39秒前
40秒前
40秒前
霁星河完成签到,获得积分10
41秒前
41秒前
恰克完成签到,获得积分10
42秒前
CharlotteBlue应助z4kr采纳,获得30
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956848
求助须知:如何正确求助?哪些是违规求助? 3502916
关于积分的说明 11110677
捐赠科研通 3233882
什么是DOI,文献DOI怎么找? 1787655
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802191