亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient Epileptic Seizure Prediction Based on Deep Learning

计算机科学 人工智能 判别式 深度学习 卷积神经网络 预处理器 学习迁移 特征提取 癫痫发作 人工神经网络 稳健性(进化) 恒虚警率 假警报 模式识别(心理学) 脑电图 循环神经网络 机器学习 发作性 癫痫 生物 基因 精神科 心理学 神经科学 化学 生物化学
作者
Hisham Daoud,Magdy Bayoumi
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:13 (5): 804-813 被引量:449
标识
DOI:10.1109/tbcas.2019.2929053
摘要

Epilepsy is one of the world's most common neurological diseases. Early prediction of the incoming seizures has a great influence on epileptic patients' life. In this paper, a novel patient-specific seizure prediction technique based on deep learning and applied to long-term scalp electroencephalogram (EEG) recordings is proposed. The goal is to accurately detect the preictal brain state and differentiate it from the prevailing interictal state as early as possible and make it suitable for real time. The features extraction and classification processes are combined into a single automated system. Raw EEG signal without any preprocessing is considered as the input to the system which further reduces the computations. Four deep learning models are proposed to extract the most discriminative features which enhance the classification accuracy and prediction time. The proposed approach takes advantage of the convolutional neural network in extracting the significant spatial features from different scalp positions and the recurrent neural network in expecting the incidence of seizures earlier than the current methods. A semi-supervised approach based on transfer learning technique is introduced to improve the optimization problem. A channel selection algorithm is proposed to select the most relevant EEG channels which makes the proposed system good candidate for real-time usage. An effective test method is utilized to ensure robustness. The achieved highest accuracy of 99.6% and lowest false alarm rate of 0.004 h - 1 along with very early seizure prediction time of 1 h make the proposed method the most efficient among the state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
7秒前
神勇的又槐完成签到,获得积分10
24秒前
搜集达人应助科研通管家采纳,获得10
44秒前
隐形曼青应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
搜集达人应助科研通管家采纳,获得10
44秒前
隐形曼青应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
科目三应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
科目三应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
45秒前
Shueason完成签到 ,获得积分10
49秒前
SHIRU发布了新的文献求助30
50秒前
1分钟前
隐形曼青应助沉默的倔驴采纳,获得10
1分钟前
1分钟前
Jasper应助幸福的逍遥采纳,获得10
1分钟前
balko完成签到,获得积分10
1分钟前
ZL完成签到,获得积分10
2分钟前
ZL发布了新的文献求助20
2分钟前
2分钟前
清风明月完成签到 ,获得积分10
2分钟前
2分钟前
切尔顿发布了新的文献求助10
2分钟前
Karol发布了新的文献求助10
2分钟前
2分钟前
haprier完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746834
求助须知:如何正确求助?哪些是违规求助? 5439584
关于积分的说明 15355945
捐赠科研通 4886825
什么是DOI,文献DOI怎么找? 2627463
邀请新用户注册赠送积分活动 1575912
关于科研通互助平台的介绍 1532682