Efficient Epileptic Seizure Prediction Based on Deep Learning

计算机科学 人工智能 判别式 深度学习 卷积神经网络 预处理器 学习迁移 特征提取 癫痫发作 人工神经网络 稳健性(进化) 恒虚警率 假警报 模式识别(心理学) 脑电图 循环神经网络 机器学习 发作性 癫痫 心理学 化学 神经科学 精神科 生物化学 基因 生物
作者
Hisham Daoud,Magdy Bayoumi
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:13 (5): 804-813 被引量:359
标识
DOI:10.1109/tbcas.2019.2929053
摘要

Epilepsy is one of the world's most common neurological diseases. Early prediction of the incoming seizures has a great influence on epileptic patients' life. In this paper, a novel patient-specific seizure prediction technique based on deep learning and applied to long-term scalp electroencephalogram (EEG) recordings is proposed. The goal is to accurately detect the preictal brain state and differentiate it from the prevailing interictal state as early as possible and make it suitable for real time. The features extraction and classification processes are combined into a single automated system. Raw EEG signal without any preprocessing is considered as the input to the system which further reduces the computations. Four deep learning models are proposed to extract the most discriminative features which enhance the classification accuracy and prediction time. The proposed approach takes advantage of the convolutional neural network in extracting the significant spatial features from different scalp positions and the recurrent neural network in expecting the incidence of seizures earlier than the current methods. A semi-supervised approach based on transfer learning technique is introduced to improve the optimization problem. A channel selection algorithm is proposed to select the most relevant EEG channels which makes the proposed system good candidate for real-time usage. An effective test method is utilized to ensure robustness. The achieved highest accuracy of 99.6% and lowest false alarm rate of 0.004 h - 1 along with very early seizure prediction time of 1 h make the proposed method the most efficient among the state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mc1220完成签到,获得积分10
刚刚
刚刚
冰刀完成签到,获得积分10
1秒前
kid1412完成签到 ,获得积分10
2秒前
LU完成签到,获得积分10
2秒前
小蘑菇应助R先生采纳,获得50
2秒前
2秒前
小嘎完成签到 ,获得积分10
3秒前
3秒前
3秒前
小虎发布了新的文献求助30
3秒前
4秒前
superworm1完成签到,获得积分10
4秒前
不懂事的小孩完成签到,获得积分10
4秒前
张瑶完成签到,获得积分10
4秒前
chloe完成签到 ,获得积分10
4秒前
桐桐应助申小萌采纳,获得10
5秒前
星星泡饭完成签到,获得积分10
5秒前
健忘曼云完成签到,获得积分10
5秒前
晶晶妹妹发布了新的文献求助10
5秒前
5秒前
通~发布了新的文献求助10
6秒前
6秒前
xiaohongmao完成签到,获得积分10
6秒前
科研通AI5应助6680668采纳,获得10
7秒前
7秒前
卡卡发布了新的文献求助10
8秒前
9秒前
欢呼鼠标发布了新的文献求助10
9秒前
appearance发布了新的文献求助10
9秒前
奋斗的凡完成签到 ,获得积分10
9秒前
ice完成签到 ,获得积分10
10秒前
junc完成签到,获得积分10
10秒前
小小完成签到,获得积分20
10秒前
12秒前
13秒前
R先生完成签到,获得积分10
13秒前
小土豆完成签到,获得积分10
13秒前
申小萌完成签到,获得积分10
13秒前
饭小心发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762