Image Compressed Sensing Using Convolutional Neural Network

压缩传感 计算机科学 卷积神经网络 采样(信号处理) 迭代重建 人工智能 基质(化学分析) 模式识别(心理学) 二进制数 算法 逻辑矩阵 信号重构 人工神经网络 计算机视觉 信号处理 数学 数字信号处理 化学 材料科学 算术 有机化学 滤波器(信号处理) 计算机硬件 复合材料 群(周期表)
作者
Wuzhen Shi,Feng Jiang,Shaohui Liu,Debin Zhao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 375-388 被引量:277
标识
DOI:10.1109/tip.2019.2928136
摘要

In the study of compressed sensing (CS), the two main challenges are the design of sampling matrix and the development of reconstruction method. On the one hand, the usually used random sampling matrices (e.g., GRM) are signal independent, which ignore the characteristics of the signal. On the other hand, the state-of-the-art image CS methods (e.g., GSR and MH) achieve quite good performance, however with much higher computational complexity. To deal with the two challenges, we propose an image CS framework using convolutional neural network (dubbed CSNet) that includes a sampling network and a reconstruction network, which are optimized jointly. The sampling network adaptively learns the sampling matrix from the training images, which makes the CS measurements retain more image structural information for better reconstruction. Specifically, three types of sampling matrices are learned, i.e., floating-point matrix, {0, 1}-binary matrix, and {-1, +1}-bipolar matrix. The last two matrices are specially designed for easy storage and hardware implementation. The reconstruction network, which contains a linear initial reconstruction network and a non-linear deep reconstruction network, learns an end-to-end mapping between the CS measurements and the reconstructed images. Experimental results demonstrate that CSNet offers state-of-the-art reconstruction quality, while achieving fast running speed. In addition, CSNet with {0, 1}-binary matrix, and {-1, +1}-bipolar matrix gets comparable performance with the existing deep learning-based CS methods, outperforms the traditional CS methods. Experimental results further suggest that the learned sampling matrices can improve the traditional image CS reconstruction methods significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
缺粥发布了新的文献求助10
刚刚
clearlove发布了新的文献求助10
1秒前
1秒前
脑洞疼应助1234采纳,获得10
1秒前
2秒前
1234发布了新的文献求助10
2秒前
2秒前
sjb发布了新的文献求助10
2秒前
孝顺的丹寒完成签到,获得积分10
2秒前
3秒前
李健应助成就小懒虫采纳,获得10
3秒前
陈洋_复旦大学完成签到,获得积分10
3秒前
4秒前
4秒前
faded发布了新的文献求助10
4秒前
大个应助滴滴滴采纳,获得10
4秒前
5秒前
YUYUYU应助专一的幻儿采纳,获得10
5秒前
yyyyyuuuuu发布了新的文献求助10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
所所应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
juziyaya应助科研通管家采纳,获得30
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得20
7秒前
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
乐乐应助满意的柏柳采纳,获得10
7秒前
7秒前
汤姆发布了新的文献求助10
8秒前
moomomomomo发布了新的文献求助10
8秒前
寻道图强应助感动归尘采纳,获得30
8秒前
shuke发布了新的文献求助10
9秒前
英姑应助why采纳,获得10
9秒前
DriftHhh发布了新的文献求助10
9秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663