Image Compressed Sensing Using Convolutional Neural Network

压缩传感 计算机科学 卷积神经网络 采样(信号处理) 迭代重建 人工智能 基质(化学分析) 模式识别(心理学) 二进制数 算法 人工神经网络 计算机视觉 数学 材料科学 复合材料 滤波器(信号处理) 算术
作者
Wuzhen Shi,Feng Jiang,Shaohui Liu,Debin Zhao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 375-388 被引量:316
标识
DOI:10.1109/tip.2019.2928136
摘要

In the study of compressed sensing (CS), the two main challenges are the design of sampling matrix and the development of reconstruction method. On the one hand, the usually used random sampling matrices (e.g., GRM) are signal independent, which ignore the characteristics of the signal. On the other hand, the state-of-the-art image CS methods (e.g., GSR and MH) achieve quite good performance, however with much higher computational complexity. To deal with the two challenges, we propose an image CS framework using convolutional neural network (dubbed CSNet) that includes a sampling network and a reconstruction network, which are optimized jointly. The sampling network adaptively learns the sampling matrix from the training images, which makes the CS measurements retain more image structural information for better reconstruction. Specifically, three types of sampling matrices are learned, i.e., floating-point matrix, {0, 1}-binary matrix, and {-1, +1}-bipolar matrix. The last two matrices are specially designed for easy storage and hardware implementation. The reconstruction network, which contains a linear initial reconstruction network and a non-linear deep reconstruction network, learns an end-to-end mapping between the CS measurements and the reconstructed images. Experimental results demonstrate that CSNet offers state-of-the-art reconstruction quality, while achieving fast running speed. In addition, CSNet with {0, 1}-binary matrix, and {-1, +1}-bipolar matrix gets comparable performance with the existing deep learning-based CS methods, outperforms the traditional CS methods. Experimental results further suggest that the learned sampling matrices can improve the traditional image CS reconstruction methods significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
狮子完成签到,获得积分10
2秒前
2秒前
3秒前
穆小菜发布了新的文献求助10
3秒前
JianHon发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
ludov发布了新的文献求助10
4秒前
肖的花园发布了新的文献求助10
5秒前
小莱完成签到,获得积分0
5秒前
dhh发布了新的文献求助10
6秒前
BK_发布了新的文献求助10
6秒前
无花果应助lalala采纳,获得10
6秒前
6秒前
上官若男应助没空看采纳,获得10
6秒前
7秒前
7秒前
穆小菜完成签到,获得积分10
7秒前
云梦泽发布了新的文献求助10
8秒前
8秒前
啵啵小白发布了新的文献求助10
9秒前
Zz发布了新的文献求助30
10秒前
xxts完成签到 ,获得积分20
11秒前
shanhuo完成签到,获得积分10
11秒前
彭于晏应助dhh采纳,获得10
11秒前
11秒前
12秒前
Roxy发布了新的文献求助10
12秒前
12秒前
丸子发布了新的文献求助10
13秒前
务实水绿发布了新的文献求助10
13秒前
FashionBoy应助动人的电灯胆采纳,获得10
13秒前
青衣北风发布了新的文献求助10
14秒前
14秒前
今今发布了新的文献求助10
16秒前
啵啵小白完成签到,获得积分20
16秒前
上官若男应助思维隋采纳,获得10
17秒前
廖妙菱发布了新的文献求助10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144