MOVI: A Model-Free Approach to Dynamic Fleet Management

可扩展性 计算机科学 车队管理 运筹学 控制(管理) 比例(比率) 时间范围 数学优化 人工智能 工程类 电信 数学 量子力学 数据库 物理
作者
Takuma Oda,Carlee Joe‐Wong
标识
DOI:10.1109/infocom.2018.8485988
摘要

Modern vehicle fleets, e.g., for ridesharing platforms and taxi companies, can reduce passengers' waiting times by proactively dispatching vehicles to locations where pickup requests are anticipated in the future. Yet it is unclear how to best do this: optimal dispatching requires optimizing over several sources of uncertainty, including vehicles' travel times to their dispatched locations, as well as coordinating between vehicles so that they do not attempt to pick up the same passenger. While prior works have developed models for this uncertainty and used them to optimize dispatch policies, in this work we introduce a model-free approach. Specifically, we propose MOVI, a Deep Q-network (DQN)-based framework that directly learns the optimal vehicle dispatch policy. Since DQNs scale poorly with a large number of possible dispatches, we streamline our DQN training and suppose that each individual vehicle independently learns its own optimal policy, ensuring scalability at the cost of less coordination between vehicles. We then formulate a centralized receding-horizon control (RHC) policy to compare with our DQN policies. To compare these policies, we design and build MOVI as a large-scale realistic simulator based on 15 million taxi trip records that simulates policy-agnostic responses to dispatch decisions. We show that the DQN dispatch policy reduces the number of unserviced requests by 76% compared to without dispatch and 20% compared to the RHC approach, emphasizing the benefits of a model-free approach and suggesting that there is limited value to coordinating vehicle actions. This finding may help to explain the success of ridesharing platforms, for which drivers make individual decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
1秒前
2秒前
2秒前
水獭发布了新的文献求助10
3秒前
奥雷里亚诺的小金鱼完成签到,获得积分10
3秒前
3秒前
LZZ发布了新的文献求助10
3秒前
昵称发布了新的文献求助10
4秒前
认真的一刀发布了新的文献求助200
4秒前
Lin发布了新的文献求助10
4秒前
杨燕华完成签到,获得积分10
4秒前
pxy完成签到,获得积分10
5秒前
6秒前
6秒前
...完成签到,获得积分10
6秒前
tfsn20完成签到,获得积分0
6秒前
程程完成签到 ,获得积分10
6秒前
彪壮的明轩完成签到,获得积分10
6秒前
夏夏发布了新的文献求助10
7秒前
西子阳发布了新的文献求助10
7秒前
xf完成签到,获得积分10
7秒前
MrCoolWu发布了新的文献求助10
7秒前
qq应助zjudxn采纳,获得10
8秒前
8秒前
整齐的千万完成签到 ,获得积分10
8秒前
liu完成签到,获得积分10
9秒前
笨笨球发布了新的文献求助10
10秒前
12秒前
包容的剑发布了新的文献求助10
12秒前
SS驳回了ding应助
12秒前
星辰大海应助ZY采纳,获得10
12秒前
丘比特应助鲜艳的棒棒糖采纳,获得10
12秒前
13秒前
14秒前
曾经耳机完成签到 ,获得积分10
14秒前
rain完成签到 ,获得积分10
14秒前
讲道理的卡卡完成签到 ,获得积分10
14秒前
水獭完成签到,获得积分10
14秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762