MOVI: A Model-Free Approach to Dynamic Fleet Management

可扩展性 计算机科学 车队管理 运筹学 控制(管理) 比例(比率) 时间范围 数学优化 人工智能 工程类 电信 数学 量子力学 数据库 物理
作者
Takuma Oda,Carlee Joe‐Wong
标识
DOI:10.1109/infocom.2018.8485988
摘要

Modern vehicle fleets, e.g., for ridesharing platforms and taxi companies, can reduce passengers' waiting times by proactively dispatching vehicles to locations where pickup requests are anticipated in the future. Yet it is unclear how to best do this: optimal dispatching requires optimizing over several sources of uncertainty, including vehicles' travel times to their dispatched locations, as well as coordinating between vehicles so that they do not attempt to pick up the same passenger. While prior works have developed models for this uncertainty and used them to optimize dispatch policies, in this work we introduce a model-free approach. Specifically, we propose MOVI, a Deep Q-network (DQN)-based framework that directly learns the optimal vehicle dispatch policy. Since DQNs scale poorly with a large number of possible dispatches, we streamline our DQN training and suppose that each individual vehicle independently learns its own optimal policy, ensuring scalability at the cost of less coordination between vehicles. We then formulate a centralized receding-horizon control (RHC) policy to compare with our DQN policies. To compare these policies, we design and build MOVI as a large-scale realistic simulator based on 15 million taxi trip records that simulates policy-agnostic responses to dispatch decisions. We show that the DQN dispatch policy reduces the number of unserviced requests by 76% compared to without dispatch and 20% compared to the RHC approach, emphasizing the benefits of a model-free approach and suggesting that there is limited value to coordinating vehicle actions. This finding may help to explain the success of ridesharing platforms, for which drivers make individual decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助liuqi67采纳,获得30
1秒前
1秒前
1秒前
lezbj99发布了新的文献求助10
2秒前
处处吻完成签到 ,获得积分10
2秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
CodeCraft应助光亮的宫苴采纳,获得10
4秒前
4秒前
浪而而发布了新的文献求助10
4秒前
乐乐应助李博士采纳,获得80
4秒前
高高的冷之完成签到,获得积分10
4秒前
明理的南风完成签到,获得积分10
5秒前
123456完成签到,获得积分20
5秒前
liuting完成签到,获得积分20
6秒前
瘦瘦怜阳发布了新的文献求助10
7秒前
郭政飞发布了新的文献求助10
7秒前
123456发布了新的文献求助10
7秒前
怎么说来着完成签到,获得积分10
8秒前
田様应助化工人采纳,获得10
9秒前
铝合金男孩完成签到,获得积分10
9秒前
11秒前
酒尚温完成签到 ,获得积分10
11秒前
拥有八根情丝完成签到 ,获得积分10
12秒前
江三村完成签到 ,获得积分10
13秒前
yy完成签到 ,获得积分10
13秒前
lzz完成签到,获得积分10
13秒前
Cherish发布了新的文献求助10
14秒前
14秒前
雨晴完成签到,获得积分10
15秒前
john完成签到,获得积分10
15秒前
从容的灵凡完成签到,获得积分10
15秒前
SciGPT应助Hey采纳,获得10
16秒前
山见山发布了新的文献求助10
16秒前
一顿吃不饱完成签到,获得积分0
16秒前
WHB完成签到,获得积分10
16秒前
灰鸽舞完成签到 ,获得积分10
17秒前
17秒前
李小鑫吖完成签到,获得积分10
17秒前
研友_LMg3PZ发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565