亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

残余物 残差神经网络 计算机科学 边距(机器学习) 人工智能 集合(抽象数据类型) 试验装置 网络体系结构 缩放比例 帧(网络) 机器学习 算法 电信 计算机网络 数学 程序设计语言 几何学
作者
Christian Szegedy,Sergey Ioffe,Vincent Vanhoucke,Alexander A. Alemi
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:31 (1) 被引量:7372
标识
DOI:10.1609/aaai.v31i1.11231
摘要

Very deep convolutional networks have been central to the largest advances in image recognition performance in recent years. One example is the Inception architecture that has been shown to achieve very good performance at relatively low computational cost. Recently, the introduction of residual connections in conjunction with a more traditional architecture has yielded state-of-the-art performance in the 2015 ILSVRC challenge; its performance was similar to the latest generation Inception-v3 network. This raises the question: Are there any benefits to combining Inception architectures with residual connections? Here we give clear empirical evidence that training with residual connections accelerates the training of Inception networks significantly. There is also some evidence of residual Inception networks outperforming similarly expensive Inception networks without residual connections by a thin margin. We also present several new streamlined architectures for both residual and non-residual Inception networks. These variations improve the single-frame recognition performance on the ILSVRC 2012 classification task significantly. We further demonstrate how proper activation scaling stabilizes the training of very wide residual Inception networks. With an ensemble of three residual and one Inception-v4 networks, we achieve 3.08% top-5 error on the test set of the ImageNet classification (CLS) challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kai发布了新的文献求助10
7秒前
追寻半仙完成签到,获得积分10
7秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
过时的不评完成签到,获得积分10
58秒前
klio完成签到 ,获得积分10
1分钟前
1分钟前
荀煜祺发布了新的文献求助10
1分钟前
小付完成签到,获得积分10
1分钟前
脑洞疼应助cccc1111111采纳,获得10
1分钟前
1分钟前
cccc1111111发布了新的文献求助10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
隐形曼青应助薛艳采纳,获得10
2分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
Beverly完成签到,获得积分20
2分钟前
Beverly发布了新的文献求助10
2分钟前
2分钟前
慕青应助Beverly采纳,获得10
2分钟前
2分钟前
NS完成签到,获得积分10
2分钟前
2分钟前
谨慎秋珊完成签到 ,获得积分10
3分钟前
是谁还没睡完成签到 ,获得积分10
3分钟前
科研通AI5应助猪猪hero采纳,获得30
4分钟前
mjf111完成签到,获得积分10
4分钟前
小奋青完成签到 ,获得积分10
4分钟前
Jadyra给小张不慌的求助进行了留言
4分钟前
上官若男应助猪猪hero采纳,获得30
4分钟前
4分钟前
4分钟前
猪猪hero发布了新的文献求助30
4分钟前
Jasper应助sunyafei采纳,获得10
4分钟前
猪猪hero发布了新的文献求助30
4分钟前
年轻的凝云完成签到 ,获得积分10
4分钟前
爆米花应助科研通管家采纳,获得30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767074
求助须知:如何正确求助?哪些是违规求助? 3311529
关于积分的说明 10158838
捐赠科研通 3026733
什么是DOI,文献DOI怎么找? 1661299
邀请新用户注册赠送积分活动 793951
科研通“疑难数据库(出版商)”最低求助积分说明 755878