Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

残余物 残差神经网络 计算机科学 边距(机器学习) 人工智能 集合(抽象数据类型) 试验装置 网络体系结构 缩放比例 帧(网络) 机器学习 算法 电信 计算机网络 数学 程序设计语言 几何学
作者
Christian Szegedy,Sergey Ioffe,Vincent Vanhoucke,Alexander A. Alemi
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:31 (1) 被引量:7372
标识
DOI:10.1609/aaai.v31i1.11231
摘要

Very deep convolutional networks have been central to the largest advances in image recognition performance in recent years. One example is the Inception architecture that has been shown to achieve very good performance at relatively low computational cost. Recently, the introduction of residual connections in conjunction with a more traditional architecture has yielded state-of-the-art performance in the 2015 ILSVRC challenge; its performance was similar to the latest generation Inception-v3 network. This raises the question: Are there any benefits to combining Inception architectures with residual connections? Here we give clear empirical evidence that training with residual connections accelerates the training of Inception networks significantly. There is also some evidence of residual Inception networks outperforming similarly expensive Inception networks without residual connections by a thin margin. We also present several new streamlined architectures for both residual and non-residual Inception networks. These variations improve the single-frame recognition performance on the ILSVRC 2012 classification task significantly. We further demonstrate how proper activation scaling stabilizes the training of very wide residual Inception networks. With an ensemble of three residual and one Inception-v4 networks, we achieve 3.08% top-5 error on the test set of the ImageNet classification (CLS) challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐易天完成签到,获得积分10
刚刚
毛豆爸爸应助孙新月采纳,获得10
1秒前
1秒前
遥山发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
慧慧子完成签到,获得积分10
4秒前
雅迪完成签到,获得积分10
4秒前
乐乐发布了新的文献求助10
5秒前
6秒前
hjc完成签到,获得积分10
6秒前
落后语山发布了新的文献求助10
7秒前
8秒前
留胡子的小虾米完成签到,获得积分10
8秒前
愉快的甜瓜完成签到 ,获得积分10
9秒前
11秒前
hbkj完成签到,获得积分10
11秒前
Luchy发布了新的文献求助10
13秒前
英姑应助iufan采纳,获得10
13秒前
风中寄灵完成签到,获得积分10
13秒前
温暖的非笑完成签到 ,获得积分10
13秒前
wangtubianou发布了新的文献求助10
14秒前
黄剑兴发布了新的文献求助10
14秒前
14秒前
baniu完成签到,获得积分10
15秒前
肥肥熊完成签到,获得积分10
15秒前
小蘑菇应助小鱼采纳,获得10
16秒前
wlei完成签到,获得积分10
16秒前
哈尼完成签到,获得积分10
16秒前
俏皮的采波完成签到,获得积分10
17秒前
杜杨帆完成签到,获得积分10
17秒前
落后语山完成签到,获得积分10
17秒前
17秒前
lm完成签到,获得积分10
17秒前
Hello应助叽里呱啦采纳,获得10
18秒前
细心青雪完成签到 ,获得积分10
18秒前
nuomici完成签到,获得积分10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134291
求助须知:如何正确求助?哪些是违规求助? 2785137
关于积分的说明 7770495
捐赠科研通 2440760
什么是DOI,文献DOI怎么找? 1297506
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792