Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

残余物 残差神经网络 计算机科学 边距(机器学习) 人工智能 集合(抽象数据类型) 试验装置 网络体系结构 缩放比例 帧(网络) 机器学习 算法 电信 计算机网络 数学 程序设计语言 几何学
作者
Christian Szegedy,Sergey Ioffe,Vincent Vanhoucke,Alexander A. Alemi
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:31 (1) 被引量:7372
标识
DOI:10.1609/aaai.v31i1.11231
摘要

Very deep convolutional networks have been central to the largest advances in image recognition performance in recent years. One example is the Inception architecture that has been shown to achieve very good performance at relatively low computational cost. Recently, the introduction of residual connections in conjunction with a more traditional architecture has yielded state-of-the-art performance in the 2015 ILSVRC challenge; its performance was similar to the latest generation Inception-v3 network. This raises the question: Are there any benefits to combining Inception architectures with residual connections? Here we give clear empirical evidence that training with residual connections accelerates the training of Inception networks significantly. There is also some evidence of residual Inception networks outperforming similarly expensive Inception networks without residual connections by a thin margin. We also present several new streamlined architectures for both residual and non-residual Inception networks. These variations improve the single-frame recognition performance on the ILSVRC 2012 classification task significantly. We further demonstrate how proper activation scaling stabilizes the training of very wide residual Inception networks. With an ensemble of three residual and one Inception-v4 networks, we achieve 3.08% top-5 error on the test set of the ImageNet classification (CLS) challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
lqkcqmu发布了新的文献求助10
1秒前
z掌握一下发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
852应助杭啊采纳,获得10
2秒前
2秒前
vikki发布了新的文献求助30
3秒前
3秒前
4秒前
4秒前
在水一方应助小马过河采纳,获得10
4秒前
molec完成签到,获得积分10
4秒前
蜡笔小舒完成签到,获得积分10
4秒前
5秒前
俭朴的新柔完成签到,获得积分10
5秒前
曹国庆完成签到 ,获得积分10
6秒前
6秒前
百里丹珍完成签到,获得积分10
6秒前
7秒前
7秒前
hokin33发布了新的文献求助10
8秒前
JM完成签到,获得积分10
9秒前
9秒前
okil2完成签到,获得积分10
9秒前
子唯完成签到,获得积分10
10秒前
hehe发布了新的文献求助10
10秒前
巫凝天完成签到,获得积分10
10秒前
liu完成签到,获得积分10
11秒前
11秒前
11秒前
七柒完成签到,获得积分20
12秒前
Lucas应助abc采纳,获得10
12秒前
13秒前
13秒前
心灵美又蓝关注了科研通微信公众号
14秒前
14秒前
wjj119完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650