Deep Interest Evolution Network for Click-Through Rate Prediction

计算机科学 点击率 代表(政治) 提取器 感兴趣区域 利率 公共利益 人工智能 图层(电子) 过程(计算) 机器学习 数据挖掘 情报检索 工程类 操作系统 经济 政治 有机化学 化学 法学 货币经济学 工艺工程 政治学
作者
Guorui Zhou,Na Mou,Ying Fan,Qi Pi,Weijie Bian,Chang Zhou,Xiaoqiang Zhu,Kun Gai
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:33 (01): 5941-5948 被引量:693
标识
DOI:10.1609/aaai.v33i01.33015941
摘要

Click-through rate (CTR) prediction, whose goal is to estimate the probability of a user clicking on the item, has become one of the core tasks in the advertising system. For CTR prediction model, it is necessary to capture the latent user interest behind the user behavior data. Besides, considering the changing of the external environment and the internal cognition, user interest evolves over time dynamically. There are several CTR prediction methods for interest modeling, while most of them regard the representation of behavior as the interest directly, and lack specially modeling for latent interest behind the concrete behavior. Moreover, little work considers the changing trend of the interest. In this paper, we propose a novel model, named Deep Interest Evolution Network (DIEN), for CTR prediction. Specifically, we design interest extractor layer to capture temporal interests from history behavior sequence. At this layer, we introduce an auxiliary loss to supervise interest extracting at each step. As user interests are diverse, especially in the e-commerce system, we propose interest evolving layer to capture interest evolving process that is relative to the target item. At interest evolving layer, attention mechanism is embedded into the sequential structure novelly, and the effects of relative interests are strengthened during interest evolution. In the experiments on both public and industrial datasets, DIEN significantly outperforms the state-of-the-art solutions. Notably, DIEN has been deployed in the display advertisement system of Taobao, and obtained 20.7% improvement on CTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumu发布了新的文献求助10
刚刚
1秒前
XJ发布了新的文献求助10
3秒前
活力青筠完成签到,获得积分10
3秒前
张凌霄完成签到,获得积分10
3秒前
shinn发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
元g完成签到,获得积分20
4秒前
5秒前
喝酸奶不舔盖完成签到 ,获得积分10
5秒前
乐乐应助Chen采纳,获得10
5秒前
在水一方应助迷人芙蓉采纳,获得10
7秒前
ssstuck发布了新的文献求助10
8秒前
bingshuaizhao发布了新的文献求助10
8秒前
无问西东完成签到 ,获得积分10
9秒前
Owen应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
柯一一应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
11秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
柯一一应助科研通管家采纳,获得10
11秒前
hzl发布了新的文献求助10
11秒前
14秒前
15秒前
乐乐应助刻苦的晓槐采纳,获得10
16秒前
思源应助grace采纳,获得10
17秒前
19秒前
大模型应助元g采纳,获得10
19秒前
充电宝应助lei029采纳,获得10
20秒前
21秒前
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305