Deep Interest Evolution Network for Click-Through Rate Prediction

计算机科学 点击率 代表(政治) 提取器 感兴趣区域 利率 公共利益 人工智能 图层(电子) 过程(计算) 机器学习 数据挖掘 情报检索 工程类 操作系统 经济 政治 有机化学 化学 法学 货币经济学 工艺工程 政治学
作者
Guorui Zhou,Na Mou,Ying Fan,Qi Pi,Weijie Bian,Chang Zhou,Xiaoqiang Zhu,Kun Gai
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:33 (01): 5941-5948 被引量:693
标识
DOI:10.1609/aaai.v33i01.33015941
摘要

Click-through rate (CTR) prediction, whose goal is to estimate the probability of a user clicking on the item, has become one of the core tasks in the advertising system. For CTR prediction model, it is necessary to capture the latent user interest behind the user behavior data. Besides, considering the changing of the external environment and the internal cognition, user interest evolves over time dynamically. There are several CTR prediction methods for interest modeling, while most of them regard the representation of behavior as the interest directly, and lack specially modeling for latent interest behind the concrete behavior. Moreover, little work considers the changing trend of the interest. In this paper, we propose a novel model, named Deep Interest Evolution Network (DIEN), for CTR prediction. Specifically, we design interest extractor layer to capture temporal interests from history behavior sequence. At this layer, we introduce an auxiliary loss to supervise interest extracting at each step. As user interests are diverse, especially in the e-commerce system, we propose interest evolving layer to capture interest evolving process that is relative to the target item. At interest evolving layer, attention mechanism is embedded into the sequential structure novelly, and the effects of relative interests are strengthened during interest evolution. In the experiments on both public and industrial datasets, DIEN significantly outperforms the state-of-the-art solutions. Notably, DIEN has been deployed in the display advertisement system of Taobao, and obtained 20.7% improvement on CTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ling发布了新的文献求助10
刚刚
jhw完成签到 ,获得积分10
2秒前
TRACEY完成签到,获得积分10
3秒前
3秒前
今后应助咋咋采纳,获得10
4秒前
4秒前
shiqi完成签到,获得积分10
5秒前
超级的鞅发布了新的文献求助10
5秒前
yutos完成签到,获得积分20
6秒前
6秒前
Hello应助整个der采纳,获得10
7秒前
8秒前
可爱妹发布了新的文献求助10
9秒前
冉遗应助ll采纳,获得10
9秒前
调皮傲旋发布了新的文献求助30
9秒前
Suc发布了新的文献求助10
10秒前
四号花店发布了新的文献求助10
11秒前
11秒前
11秒前
传奇3应助lei采纳,获得10
14秒前
14秒前
15秒前
传奇3应助超级的鞅采纳,获得10
15秒前
香风智乃完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
mi完成签到,获得积分10
17秒前
hancyzhang完成签到 ,获得积分10
18秒前
18秒前
18秒前
18秒前
汉堡包应助shi hui采纳,获得10
19秒前
19秒前
BowieHuang发布了新的文献求助30
21秒前
21秒前
NorthWang完成签到,获得积分10
21秒前
雪生在无人荒野完成签到,获得积分10
22秒前
羊羊羊应助HanyuJing采纳,获得10
22秒前
整个der发布了新的文献求助10
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488