Deep Learning for Alzheimer’s Disease Classification using Texture Features

人工智能 纹理(宇宙学) 模式识别(心理学) 深度学习 疾病 计算机科学 医学 病理 图像(数学)
作者
Jae-Hong So,Nuwan Madusanka,Heung‐Kook Choi,Boo-Kyeong Choi,Hyeon‐Gyun Park
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:15 (7): 689-698 被引量:26
标识
DOI:10.2174/1573405615666190404163233
摘要

Background: We propose a classification method for Alzheimer’s disease (AD) based on the texture of the hippocampus, which is the organ that is most affected by the onset of AD. Methods: We obtained magnetic resonance images (MRIs) of Alzheimer’s patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. This dataset consists of image data for AD, mild cognitive impairment (MCI), and normal controls (NCs), classified according to the cognitive condition. In this study, the research methods included image processing, texture analyses, and deep learning. Firstly, images were acquired for texture analyses, which were then re-spaced, registered, and cropped with Gabor filters applied to the resulting image data. In the texture analyses, we applied the 3-dimensional (3D) gray-level co-occurrence (GLCM) method to evaluate the textural features of the image, and used Fisher’s coefficient to select the appropriate features for classification. In the last stage, we implemented a deep learning multi-layer perceptron (MLP) model, which we divided into three types, namely, AD-MCI, AD-NC, and MCI-NC. Results: We used this model to assess the accuracy of the proposed method. The classification accuracy of the proposed deep learning model was confirmed in the cases of AD-MCI (72.5%), ADNC (85%), and MCI-NC (75%). We also evaluated the results obtained using a confusion matrix, support vector machine (SVM), and K-nearest neighbor (KNN) classifier and analyzed the results to objectively verify our model. We obtained the highest accuracy of 85% in the AD-NC. Conclusion: The proposed model was at least 6–19% more accurate than the SVM and KNN classifiers, respectively. Hence, this study confirms the validity and superiority of the proposed method, which can be used as a diagnostic tool for early Alzheimer’s diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琦铉完成签到,获得积分10
刚刚
1235456完成签到,获得积分20
刚刚
王丹丹发布了新的文献求助10
1秒前
麻辣橙子完成签到,获得积分10
2秒前
小杭76应助ajxtt采纳,获得10
2秒前
大桔子发布了新的文献求助10
2秒前
WoeL.Aug.11完成签到,获得积分10
2秒前
yuhongsun完成签到,获得积分10
2秒前
bamboo发布了新的文献求助10
3秒前
韶华若锦发布了新的文献求助10
3秒前
张子陌发布了新的文献求助10
4秒前
4秒前
乐观的海发布了新的文献求助10
4秒前
anfly发布了新的文献求助10
4秒前
5秒前
wwz应助lx840518采纳,获得20
5秒前
梁燕回发布了新的文献求助10
5秒前
张力航发布了新的文献求助10
5秒前
完美世界应助辞镜采纳,获得10
5秒前
LMH完成签到 ,获得积分10
5秒前
喵喵完成签到,获得积分10
6秒前
yuhongsun发布了新的文献求助10
6秒前
6秒前
chenqiumu应助科研通管家采纳,获得30
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得20
7秒前
慕青应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
chenqiumu应助科研通管家采纳,获得30
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
Lindsay应助科研通管家采纳,获得10
7秒前
Lindsay应助科研通管家采纳,获得10
8秒前
8秒前
李健应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879