Deep Learning for Alzheimer’s Disease Classification using Texture Features

人工智能 纹理(宇宙学) 模式识别(心理学) 深度学习 疾病 计算机科学 医学 病理 图像(数学)
作者
Jae-Hong So,Nuwan Madusanka,Heung‐Kook Choi,Boo-Kyeong Choi,Hyeon‐Gyun Park
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:15 (7): 689-698 被引量:26
标识
DOI:10.2174/1573405615666190404163233
摘要

Background: We propose a classification method for Alzheimer’s disease (AD) based on the texture of the hippocampus, which is the organ that is most affected by the onset of AD. Methods: We obtained magnetic resonance images (MRIs) of Alzheimer’s patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. This dataset consists of image data for AD, mild cognitive impairment (MCI), and normal controls (NCs), classified according to the cognitive condition. In this study, the research methods included image processing, texture analyses, and deep learning. Firstly, images were acquired for texture analyses, which were then re-spaced, registered, and cropped with Gabor filters applied to the resulting image data. In the texture analyses, we applied the 3-dimensional (3D) gray-level co-occurrence (GLCM) method to evaluate the textural features of the image, and used Fisher’s coefficient to select the appropriate features for classification. In the last stage, we implemented a deep learning multi-layer perceptron (MLP) model, which we divided into three types, namely, AD-MCI, AD-NC, and MCI-NC. Results: We used this model to assess the accuracy of the proposed method. The classification accuracy of the proposed deep learning model was confirmed in the cases of AD-MCI (72.5%), ADNC (85%), and MCI-NC (75%). We also evaluated the results obtained using a confusion matrix, support vector machine (SVM), and K-nearest neighbor (KNN) classifier and analyzed the results to objectively verify our model. We obtained the highest accuracy of 85% in the AD-NC. Conclusion: The proposed model was at least 6–19% more accurate than the SVM and KNN classifiers, respectively. Hence, this study confirms the validity and superiority of the proposed method, which can be used as a diagnostic tool for early Alzheimer’s diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
robi发布了新的文献求助30
2秒前
catch应助郁一刀采纳,获得10
3秒前
小丸子完成签到 ,获得积分10
3秒前
Sml发布了新的文献求助10
3秒前
lqz0103发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
乐乐应助李李李采纳,获得10
10秒前
华仔应助嗯哼采纳,获得10
10秒前
NexusExplorer应助Ivan采纳,获得10
11秒前
干净惜蕊发布了新的文献求助10
12秒前
12秒前
称心的乘云完成签到,获得积分10
13秒前
隐形曼青应助月蚀六花采纳,获得10
14秒前
二三语逢山外山完成签到 ,获得积分10
14秒前
凌儿响叮当完成签到 ,获得积分10
15秒前
mtfx发布了新的文献求助10
15秒前
18秒前
陆扬完成签到,获得积分10
19秒前
梦璃安发布了新的文献求助10
19秒前
19秒前
嗯哼完成签到,获得积分10
22秒前
25秒前
李李李发布了新的文献求助10
26秒前
Sml完成签到,获得积分10
29秒前
29秒前
鱼干星星完成签到 ,获得积分10
30秒前
32秒前
32秒前
Lee小白完成签到,获得积分10
32秒前
33秒前
Lucas应助研友_LaV1xn采纳,获得10
34秒前
1917发布了新的文献求助10
35秒前
李李李完成签到,获得积分10
37秒前
Narcissus发布了新的文献求助10
38秒前
39秒前
lqz0103完成签到,获得积分10
40秒前
CipherSage应助科研通管家采纳,获得10
40秒前
月蚀六花发布了新的文献求助10
40秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 510
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3058597
求助须知:如何正确求助?哪些是违规求助? 2714676
关于积分的说明 7441656
捐赠科研通 2360028
什么是DOI,文献DOI怎么找? 1250485
科研通“疑难数据库(出版商)”最低求助积分说明 607447
版权声明 596421