Deep Learning for Alzheimer’s Disease Classification using Texture Features

人工智能 纹理(宇宙学) 模式识别(心理学) 深度学习 疾病 计算机科学 医学 病理 图像(数学)
作者
Jae-Hong So,Nuwan Madusanka,Heung‐Kook Choi,Boo-Kyeong Choi,Hyeon‐Gyun Park
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:15 (7): 689-698 被引量:26
标识
DOI:10.2174/1573405615666190404163233
摘要

Background: We propose a classification method for Alzheimer’s disease (AD) based on the texture of the hippocampus, which is the organ that is most affected by the onset of AD. Methods: We obtained magnetic resonance images (MRIs) of Alzheimer’s patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. This dataset consists of image data for AD, mild cognitive impairment (MCI), and normal controls (NCs), classified according to the cognitive condition. In this study, the research methods included image processing, texture analyses, and deep learning. Firstly, images were acquired for texture analyses, which were then re-spaced, registered, and cropped with Gabor filters applied to the resulting image data. In the texture analyses, we applied the 3-dimensional (3D) gray-level co-occurrence (GLCM) method to evaluate the textural features of the image, and used Fisher’s coefficient to select the appropriate features for classification. In the last stage, we implemented a deep learning multi-layer perceptron (MLP) model, which we divided into three types, namely, AD-MCI, AD-NC, and MCI-NC. Results: We used this model to assess the accuracy of the proposed method. The classification accuracy of the proposed deep learning model was confirmed in the cases of AD-MCI (72.5%), ADNC (85%), and MCI-NC (75%). We also evaluated the results obtained using a confusion matrix, support vector machine (SVM), and K-nearest neighbor (KNN) classifier and analyzed the results to objectively verify our model. We obtained the highest accuracy of 85% in the AD-NC. Conclusion: The proposed model was at least 6–19% more accurate than the SVM and KNN classifiers, respectively. Hence, this study confirms the validity and superiority of the proposed method, which can be used as a diagnostic tool for early Alzheimer’s diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻发布了新的文献求助10
刚刚
冲冲冲完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
善良身影完成签到,获得积分10
3秒前
天天快乐应助郭豪琪采纳,获得10
4秒前
13679165979发布了新的文献求助10
6秒前
13679165979发布了新的文献求助10
6秒前
13679165979发布了新的文献求助10
6秒前
13679165979发布了新的文献求助10
6秒前
13679165979发布了新的文献求助10
6秒前
6秒前
Su发布了新的文献求助10
6秒前
6秒前
淡定的思松应助呆萌士晋采纳,获得10
6秒前
7秒前
8秒前
dilli完成签到 ,获得积分10
8秒前
cwy发布了新的文献求助10
10秒前
wz发布了新的文献求助10
10秒前
balzacsun发布了新的文献求助10
12秒前
JamesPei应助星星采纳,获得10
12秒前
13秒前
13秒前
laodie完成签到,获得积分10
14秒前
彭于晏应助ipeakkka采纳,获得10
14秒前
14秒前
敏感的芷发布了新的文献求助10
14秒前
susan发布了新的文献求助10
14秒前
15秒前
李爱国应助轻松的贞采纳,获得10
15秒前
wz完成签到,获得积分10
16秒前
子川完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824