Deep Learning for Alzheimer’s Disease Classification using Texture Features

人工智能 纹理(宇宙学) 模式识别(心理学) 深度学习 疾病 计算机科学 医学 病理 图像(数学)
作者
Jae-Hong So,Nuwan Madusanka,Heung‐Kook Choi,Boo-Kyeong Choi,Hyeon‐Gyun Park
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:15 (7): 689-698 被引量:26
标识
DOI:10.2174/1573405615666190404163233
摘要

Background: We propose a classification method for Alzheimer’s disease (AD) based on the texture of the hippocampus, which is the organ that is most affected by the onset of AD. Methods: We obtained magnetic resonance images (MRIs) of Alzheimer’s patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. This dataset consists of image data for AD, mild cognitive impairment (MCI), and normal controls (NCs), classified according to the cognitive condition. In this study, the research methods included image processing, texture analyses, and deep learning. Firstly, images were acquired for texture analyses, which were then re-spaced, registered, and cropped with Gabor filters applied to the resulting image data. In the texture analyses, we applied the 3-dimensional (3D) gray-level co-occurrence (GLCM) method to evaluate the textural features of the image, and used Fisher’s coefficient to select the appropriate features for classification. In the last stage, we implemented a deep learning multi-layer perceptron (MLP) model, which we divided into three types, namely, AD-MCI, AD-NC, and MCI-NC. Results: We used this model to assess the accuracy of the proposed method. The classification accuracy of the proposed deep learning model was confirmed in the cases of AD-MCI (72.5%), ADNC (85%), and MCI-NC (75%). We also evaluated the results obtained using a confusion matrix, support vector machine (SVM), and K-nearest neighbor (KNN) classifier and analyzed the results to objectively verify our model. We obtained the highest accuracy of 85% in the AD-NC. Conclusion: The proposed model was at least 6–19% more accurate than the SVM and KNN classifiers, respectively. Hence, this study confirms the validity and superiority of the proposed method, which can be used as a diagnostic tool for early Alzheimer’s diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助清脆荟采纳,获得10
刚刚
lzy发布了新的文献求助10
1秒前
XH_L完成签到,获得积分10
1秒前
2秒前
科研顺完成签到,获得积分10
2秒前
3秒前
Kk完成签到,获得积分10
3秒前
wx发布了新的文献求助10
3秒前
4秒前
SciGPT应助will采纳,获得10
5秒前
chenzq发布了新的文献求助10
5秒前
小李同学完成签到,获得积分10
5秒前
H-C应助映城采纳,获得50
5秒前
烟花应助默默的不二采纳,获得10
5秒前
5秒前
6秒前
6秒前
Elanie.zh发布了新的文献求助10
7秒前
任性初夏发布了新的文献求助10
7秒前
YUan完成签到,获得积分10
7秒前
顺利的映天完成签到,获得积分10
7秒前
8秒前
科研通AI6应助ycy采纳,获得10
8秒前
Ava应助红油曲奇采纳,获得10
8秒前
8秒前
8秒前
汉堡包应助周凡淇采纳,获得30
8秒前
酷波er应助周凡淇采纳,获得10
8秒前
科研通AI6应助周凡淇采纳,获得10
8秒前
科研通AI6应助周凡淇采纳,获得10
8秒前
喔喔佳佳完成签到 ,获得积分10
9秒前
wx完成签到,获得积分10
9秒前
和谐的晓凡完成签到,获得积分10
9秒前
科研通AI6应助zhuh采纳,获得10
10秒前
小孟完成签到,获得积分10
11秒前
小何发布了新的文献求助10
11秒前
zxc发布了新的文献求助10
12秒前
庚123完成签到,获得积分10
12秒前
xu完成签到 ,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407