亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning for Alzheimer’s Disease Classification using Texture Features

人工智能 纹理(宇宙学) 模式识别(心理学) 深度学习 疾病 计算机科学 医学 病理 图像(数学)
作者
Jae-Hong So,Nuwan Madusanka,Heung‐Kook Choi,Boo-Kyeong Choi,Hyeon‐Gyun Park
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:15 (7): 689-698 被引量:26
标识
DOI:10.2174/1573405615666190404163233
摘要

Background: We propose a classification method for Alzheimer’s disease (AD) based on the texture of the hippocampus, which is the organ that is most affected by the onset of AD. Methods: We obtained magnetic resonance images (MRIs) of Alzheimer’s patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. This dataset consists of image data for AD, mild cognitive impairment (MCI), and normal controls (NCs), classified according to the cognitive condition. In this study, the research methods included image processing, texture analyses, and deep learning. Firstly, images were acquired for texture analyses, which were then re-spaced, registered, and cropped with Gabor filters applied to the resulting image data. In the texture analyses, we applied the 3-dimensional (3D) gray-level co-occurrence (GLCM) method to evaluate the textural features of the image, and used Fisher’s coefficient to select the appropriate features for classification. In the last stage, we implemented a deep learning multi-layer perceptron (MLP) model, which we divided into three types, namely, AD-MCI, AD-NC, and MCI-NC. Results: We used this model to assess the accuracy of the proposed method. The classification accuracy of the proposed deep learning model was confirmed in the cases of AD-MCI (72.5%), ADNC (85%), and MCI-NC (75%). We also evaluated the results obtained using a confusion matrix, support vector machine (SVM), and K-nearest neighbor (KNN) classifier and analyzed the results to objectively verify our model. We obtained the highest accuracy of 85% in the AD-NC. Conclusion: The proposed model was at least 6–19% more accurate than the SVM and KNN classifiers, respectively. Hence, this study confirms the validity and superiority of the proposed method, which can be used as a diagnostic tool for early Alzheimer’s diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asd_1应助lucky采纳,获得10
47秒前
兔兔兔应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
广阔天地完成签到 ,获得积分10
1分钟前
大意的世倌完成签到,获得积分10
1分钟前
董羽佳完成签到,获得积分10
1分钟前
1分钟前
1分钟前
stark完成签到,获得积分10
1分钟前
轻松钢铁侠完成签到,获得积分10
1分钟前
kingcoffee完成签到 ,获得积分10
2分钟前
SciGPT应助活力的夏旋采纳,获得10
2分钟前
单薄归尘发布了新的文献求助10
2分钟前
核桃应助米奇采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
阔达的寄灵完成签到,获得积分20
2分钟前
Lucas应助moumou采纳,获得10
2分钟前
reedleaf完成签到,获得积分10
3分钟前
袁青寒完成签到 ,获得积分10
3分钟前
慕青应助reedleaf采纳,获得10
3分钟前
3分钟前
3分钟前
reedleaf发布了新的文献求助10
3分钟前
拿铁小笼包完成签到,获得积分10
3分钟前
moumou完成签到,获得积分10
3分钟前
心灵美千秋完成签到 ,获得积分10
4分钟前
123完成签到 ,获得积分10
4分钟前
拼搏的高高完成签到 ,获得积分10
4分钟前
核桃应助张静怡采纳,获得10
4分钟前
月亮完成签到 ,获得积分10
4分钟前
4分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
4分钟前
ranj完成签到,获得积分10
4分钟前
4分钟前
mumu发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4540320
求助须知:如何正确求助?哪些是违规求助? 3974282
关于积分的说明 12310253
捐赠科研通 3641335
什么是DOI,文献DOI怎么找? 2005112
邀请新用户注册赠送积分活动 1040506
科研通“疑难数据库(出版商)”最低求助积分说明 929699