Graphene trapped silk scaffolds integrate high conductivity and stability

丝绸 石墨烯 丝素 材料科学 生物电子学 制作 组织工程 复合材料 聚合物 静电纺丝 神经组织工程 纳米技术 生物传感器 生物医学工程 病理 替代医学 医学
作者
Chao Zhang,Suna Fan,Huili Shao,Xuechao Hu,Bo Zhu,Yaopeng Zhang
出处
期刊:Carbon [Elsevier]
卷期号:148: 16-27 被引量:47
标识
DOI:10.1016/j.carbon.2019.03.042
摘要

Incorporation of highly conducting graphene into electrospun biodegradable polymer mats is very promising for the fabrication of electroactive flexible scaffolds toward neural tissue engineering. However, the direct assembly of graphene onto electrospun polymer fibers for preparing stable conducting scaffolds remains a critical challenge due to the inertness of graphene. To overcome this issue, a one-pot assembly approach was developed to trap graphene inside electrospun mats of regenerated silk fibroin (RSF) by applying its ethanol-treatment driven supercontract. This approach is simple, direct, and controllable, loads only a small amount of graphene, and achieves high conductivity for scaffolds (a minimum resistance of (54.9 ± 20.3) Ω/sq). This ensures weak interference on the softness and biodegradability of graphene trapped RSF scaffolds. Thus, the prepared graphene functionalized RSF scaffold remains highly conductive and stable even with ultrasonic washing. It promotes cell spreading and differentiation, and significantly stimulates the neurite outgrowth by 74.5%, while applying an optimized constant electrical potential, thus indicating it as an ideal candidate as electroactive scaffold for tissue engineering. The application of graphene trapped electrospun polymer mats can be extended to electro-tuned tissue engineering, skin electronics, wearable sensors, and e-textiles due to its combination of flexibility, portability, and electrical conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐风完成签到,获得积分10
刚刚
bai发布了新的文献求助30
刚刚
dddd完成签到,获得积分20
1秒前
2秒前
乱世发布了新的文献求助10
2秒前
苏伯穹发布了新的文献求助10
3秒前
guochenggong发布了新的文献求助10
3秒前
4秒前
一二一完成签到,获得积分20
4秒前
香香丿完成签到 ,获得积分10
4秒前
852应助xie采纳,获得10
5秒前
酷波er应助cyrong采纳,获得10
5秒前
5秒前
5秒前
动听锦程完成签到,获得积分10
6秒前
shuo发布了新的文献求助10
6秒前
大模型应助YORLAN采纳,获得10
6秒前
blingl发布了新的文献求助10
7秒前
8秒前
共享精神应助云舒采纳,获得10
9秒前
小于能毕业完成签到,获得积分10
9秒前
小刘完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
科研通AI2S应助梅花采纳,获得10
11秒前
小二郎应助红叶采纳,获得10
11秒前
11秒前
11秒前
Dasph7发布了新的文献求助10
11秒前
香雪若梅完成签到,获得积分10
12秒前
丙队长发布了新的文献求助10
14秒前
香雪若梅发布了新的文献求助10
16秒前
雨林完成签到,获得积分10
16秒前
彭于晏应助玉米大西瓜采纳,获得10
16秒前
太阳能之子完成签到,获得积分10
16秒前
模糊中正应助个性海菡采纳,获得30
17秒前
Rena发布了新的文献求助10
17秒前
神揽星辰入梦完成签到,获得积分10
17秒前
大个应助guochenggong采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469346
求助须知:如何正确求助?哪些是违规求助? 3062465
关于积分的说明 9079074
捐赠科研通 2752760
什么是DOI,文献DOI怎么找? 1510621
科研通“疑难数据库(出版商)”最低求助积分说明 697925
邀请新用户注册赠送积分活动 697866