亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effect of a Deep Learning Framework-Based Computer-Aided Diagnosis System on the Diagnostic Performance of Radiologists in Differentiating between Malignant and Benign Masses on Breast Ultrasonography

医学 恶性肿瘤 乳房成像 计算机辅助设计 放射科 乳腺超声检查 双雷达 预测值 超声科 诊断准确性 超声波 乳腺摄影术 乳腺癌 内科学 癌症 工程制图 工程类
作者
Ji Soo Choi,Boo‐Kyung Han,Eun Sook Ko,Jung Min Bae,Eun Young Ko,So Hee Song,Mi-ri Kwon,Jung Hee Shin,Soo Yeon Hahn
出处
期刊:Korean Journal of Radiology [The Korean Society of Radiology]
卷期号:20 (5): 749-749 被引量:83
标识
DOI:10.3348/kjr.2018.0530
摘要

To investigate whether a computer-aided diagnosis (CAD) system based on a deep learning framework (deep learning-based CAD) improves the diagnostic performance of radiologists in differentiating between malignant and benign masses on breast ultrasound (US).B-mode US images were prospectively obtained for 253 breast masses (173 benign, 80 malignant) in 226 consecutive patients. Breast mass US findings were retrospectively analyzed by deep learning-based CAD and four radiologists. In predicting malignancy, the CAD results were dichotomized (possibly benign vs. possibly malignant). The radiologists independently assessed Breast Imaging Reporting and Data System final assessments for two datasets (US images alone or with CAD). For each dataset, the radiologists' final assessments were classified as positive (category 4a or higher) and negative (category 3 or lower). The diagnostic performances of the radiologists for the two datasets (US alone vs. US with CAD) were compared.When the CAD results were added to the US images, the radiologists showed significant improvement in specificity (range of all radiologists for US alone vs. US with CAD: 72.8-92.5% vs. 82.1-93.1%; p < 0.001), accuracy (77.9-88.9% vs. 86.2-90.9%; p = 0.038), and positive predictive value (PPV) (60.2-83.3% vs. 70.4-85.2%; p = 0.001). However, there were no significant changes in sensitivity (81.3-88.8% vs. 86.3-95.0%; p = 0.120) and negative predictive value (91.4-93.5% vs. 92.9-97.3%; p = 0.259).Deep learning-based CAD could improve radiologists' diagnostic performance by increasing their specificity, accuracy, and PPV in differentiating between malignant and benign masses on breast US.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助sochiyuen采纳,获得10
2秒前
二妹儿发布了新的文献求助10
6秒前
yuki完成签到,获得积分20
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
二妹儿完成签到,获得积分20
12秒前
13秒前
46秒前
1分钟前
zqq完成签到,获得积分0
1分钟前
1分钟前
花花发布了新的文献求助10
1分钟前
1分钟前
zho发布了新的文献求助10
1分钟前
Jj7完成签到,获得积分10
1分钟前
morena发布了新的文献求助10
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
华仔应助科研通管家采纳,获得10
2分钟前
庞贝完成签到,获得积分10
2分钟前
mia005应助快了科研采纳,获得10
2分钟前
秀丽青枫完成签到 ,获得积分10
3分钟前
CodeCraft应助如意的冰旋采纳,获得10
3分钟前
3分钟前
3分钟前
zho发布了新的文献求助10
3分钟前
mia005完成签到,获得积分10
3分钟前
4分钟前
花花发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Simonking应助科研通管家采纳,获得50
4分钟前
震动的安柏关注了科研通微信公众号
4分钟前
4分钟前
所所应助花花采纳,获得10
4分钟前
4分钟前
SciGPT应助帅气绮露采纳,获得10
4分钟前
sochiyuen发布了新的文献求助10
4分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388415
求助须知:如何正确求助?哪些是违规求助? 3000764
关于积分的说明 8793617
捐赠科研通 2686885
什么是DOI,文献DOI怎么找? 1471874
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313