A Novel Rolling Bearing Fault Diagnosis and Severity Analysis Method

小波 方位(导航) 模式识别(心理学) 样本熵 振动 熵(时间箭头) 计算机科学 断层(地质) 支持向量机 特征提取 人工智能 控制理论(社会学) 工程类 物理 控制(管理) 量子力学 地震学 地质学
作者
Yinsheng Chen,Tinghao Zhang,Zhongming Luo,Kun Sun
出处
期刊:Applied sciences [MDPI AG]
卷期号:9 (11): 2356-2356 被引量:53
标识
DOI:10.3390/app9112356
摘要

To improve the fault identification accuracy of rolling bearing and effectively analyze the fault severity, a novel rolling bearing fault diagnosis and severity analysis method based on the fast sample entropy, the wavelet packet energy entropy, and a multiclass relevance vector machine is proposed in this paper. A fast sample entropy calculation method based on a kd tree is adopted to improve the real-time performance of fault detection in this paper. In view of the non-linearity and non-stationarity of the vibration signals, the vibration signal of the rolling bearing is decomposed into several sub-signals containing fault information by using a wavelet packet. Then, the energy entropy values of the sub-signals decomposed by the wavelet packet are calculated to generate the feature vectors for describing different fault types and severity levels of rolling bearings. The multiclass relevance vector machine modeled by the feature vectors of different fault types and severity levels is used to realize fault type identification and a fault severity analysis of the bearings. The proposed fault diagnosis and severity analysis method is fully evaluated by experiments. The experimental results demonstrate that the fault detection method based on the sample entropy can effectively detect rolling bearing failure. The fault feature extraction method based on the wavelet packet energy entropy can effectively extract the fault features of vibration signals and a multiclass relevance vector machine can identify the fault type and severity by means of the fault features contained in these signals. Compared with some existing bearing rolling fault diagnosis methods, the proposed method is excellent for fault diagnosis and severity analysis and improves the fault identification rate reaching as high as 99.47%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
一投就中发布了新的文献求助30
3秒前
4秒前
4秒前
幽默书白完成签到,获得积分10
5秒前
奋斗的苹果完成签到,获得积分10
5秒前
个性的荆发布了新的文献求助10
6秒前
blue发布了新的文献求助10
6秒前
勤恳寒安发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
负责乐安完成签到,获得积分10
8秒前
10秒前
10秒前
你能行完成签到,获得积分10
10秒前
10秒前
Denmark发布了新的文献求助10
11秒前
11秒前
狄百招完成签到,获得积分0
11秒前
许多年以后完成签到,获得积分10
11秒前
春风发布了新的文献求助10
12秒前
fuchao完成签到,获得积分20
12秒前
刘志超发布了新的文献求助10
13秒前
火星上誉完成签到 ,获得积分10
13秒前
科研辣鸡发布了新的文献求助10
13秒前
dmxhh完成签到 ,获得积分10
14秒前
14秒前
14秒前
qiu发布了新的文献求助10
14秒前
小蘑菇应助低调点小象采纳,获得10
14秒前
14秒前
小二郎应助芋泥面包采纳,获得10
15秒前
16秒前
16秒前
一滴水完成签到,获得积分10
16秒前
1233445发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790