A Novel Rolling Bearing Fault Diagnosis and Severity Analysis Method

小波 方位(导航) 模式识别(心理学) 样本熵 振动 熵(时间箭头) 计算机科学 断层(地质) 支持向量机 特征提取 人工智能 控制理论(社会学) 工程类 物理 控制(管理) 量子力学 地震学 地质学
作者
Yinsheng Chen,Tinghao Zhang,Zhongming Luo,Kun Sun
出处
期刊:Applied sciences [MDPI AG]
卷期号:9 (11): 2356-2356 被引量:53
标识
DOI:10.3390/app9112356
摘要

To improve the fault identification accuracy of rolling bearing and effectively analyze the fault severity, a novel rolling bearing fault diagnosis and severity analysis method based on the fast sample entropy, the wavelet packet energy entropy, and a multiclass relevance vector machine is proposed in this paper. A fast sample entropy calculation method based on a kd tree is adopted to improve the real-time performance of fault detection in this paper. In view of the non-linearity and non-stationarity of the vibration signals, the vibration signal of the rolling bearing is decomposed into several sub-signals containing fault information by using a wavelet packet. Then, the energy entropy values of the sub-signals decomposed by the wavelet packet are calculated to generate the feature vectors for describing different fault types and severity levels of rolling bearings. The multiclass relevance vector machine modeled by the feature vectors of different fault types and severity levels is used to realize fault type identification and a fault severity analysis of the bearings. The proposed fault diagnosis and severity analysis method is fully evaluated by experiments. The experimental results demonstrate that the fault detection method based on the sample entropy can effectively detect rolling bearing failure. The fault feature extraction method based on the wavelet packet energy entropy can effectively extract the fault features of vibration signals and a multiclass relevance vector machine can identify the fault type and severity by means of the fault features contained in these signals. Compared with some existing bearing rolling fault diagnosis methods, the proposed method is excellent for fault diagnosis and severity analysis and improves the fault identification rate reaching as high as 99.47%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到 ,获得积分10
刚刚
勤劳亦瑶发布了新的文献求助10
2秒前
CipherSage应助xlh采纳,获得10
2秒前
领导范儿应助SSS采纳,获得10
2秒前
无极微光应助HHH采纳,获得20
2秒前
轻松的猕猴桃完成签到,获得积分10
3秒前
瘦瘦的语梦完成签到,获得积分10
3秒前
4秒前
好吃发布了新的文献求助10
4秒前
机智的凝丝完成签到 ,获得积分10
5秒前
lilymozi发布了新的文献求助10
5秒前
xiaoqf发布了新的文献求助10
6秒前
MOOOO完成签到,获得积分10
6秒前
xin发布了新的文献求助10
6秒前
勤劳亦瑶完成签到,获得积分20
8秒前
斯文败类应助兴奋的万声采纳,获得30
8秒前
chanhow完成签到,获得积分10
8秒前
rainsy发布了新的文献求助10
9秒前
桐桐应助于沁冉采纳,获得30
9秒前
SSS完成签到,获得积分20
10秒前
10秒前
李爱国应助Lucy采纳,获得10
11秒前
一颗葡萄完成签到 ,获得积分10
12秒前
chanhow发布了新的文献求助10
12秒前
13秒前
13秒前
冬日空虚应助小马哥采纳,获得10
14秒前
小二郎应助勤劳亦瑶采纳,获得10
15秒前
田T发布了新的文献求助10
15秒前
慌慌完成签到 ,获得积分10
16秒前
MOOOO发布了新的文献求助10
16秒前
19秒前
SSS发布了新的文献求助10
19秒前
19秒前
俏皮不可完成签到,获得积分10
19秒前
19秒前
残剑月应助香香采纳,获得10
21秒前
薯条发布了新的文献求助10
21秒前
fsznc完成签到 ,获得积分0
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601539
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847124
捐赠科研通 4681263
什么是DOI,文献DOI怎么找? 2539418
邀请新用户注册赠送积分活动 1506305
关于科研通互助平台的介绍 1471297