亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Rolling Bearing Fault Diagnosis and Severity Analysis Method

小波 方位(导航) 模式识别(心理学) 样本熵 振动 熵(时间箭头) 计算机科学 断层(地质) 支持向量机 特征提取 人工智能 控制理论(社会学) 工程类 控制(管理) 地震学 地质学 物理 量子力学
作者
Yinsheng Chen,Tinghao Zhang,Zhongming Luo,Kun Sun
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:9 (11): 2356-2356 被引量:53
标识
DOI:10.3390/app9112356
摘要

To improve the fault identification accuracy of rolling bearing and effectively analyze the fault severity, a novel rolling bearing fault diagnosis and severity analysis method based on the fast sample entropy, the wavelet packet energy entropy, and a multiclass relevance vector machine is proposed in this paper. A fast sample entropy calculation method based on a kd tree is adopted to improve the real-time performance of fault detection in this paper. In view of the non-linearity and non-stationarity of the vibration signals, the vibration signal of the rolling bearing is decomposed into several sub-signals containing fault information by using a wavelet packet. Then, the energy entropy values of the sub-signals decomposed by the wavelet packet are calculated to generate the feature vectors for describing different fault types and severity levels of rolling bearings. The multiclass relevance vector machine modeled by the feature vectors of different fault types and severity levels is used to realize fault type identification and a fault severity analysis of the bearings. The proposed fault diagnosis and severity analysis method is fully evaluated by experiments. The experimental results demonstrate that the fault detection method based on the sample entropy can effectively detect rolling bearing failure. The fault feature extraction method based on the wavelet packet energy entropy can effectively extract the fault features of vibration signals and a multiclass relevance vector machine can identify the fault type and severity by means of the fault features contained in these signals. Compared with some existing bearing rolling fault diagnosis methods, the proposed method is excellent for fault diagnosis and severity analysis and improves the fault identification rate reaching as high as 99.47%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不秃燃的小老弟完成签到 ,获得积分10
12秒前
shiyang2014完成签到,获得积分10
16秒前
花花公子完成签到,获得积分10
22秒前
sola完成签到 ,获得积分10
24秒前
懒羊羊大王完成签到 ,获得积分10
28秒前
38秒前
欢呼的寻双完成签到,获得积分10
46秒前
Mollyshimmer完成签到 ,获得积分10
47秒前
SCIfafafafa发布了新的文献求助10
1分钟前
duxiao完成签到 ,获得积分10
2分钟前
情怀应助SCIfafafafa采纳,获得10
2分钟前
小六子完成签到,获得积分10
2分钟前
Lucas应助duxiao采纳,获得10
2分钟前
Aaron完成签到 ,获得积分0
2分钟前
在水一方应助科研通管家采纳,获得30
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
2分钟前
Jasper应助hongtao采纳,获得10
3分钟前
3分钟前
JamesPei应助Fung采纳,获得10
3分钟前
3分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
4分钟前
4分钟前
qiu发布了新的文献求助10
4分钟前
顾矜应助狂发文章采纳,获得10
4分钟前
4分钟前
Djnsbj发布了新的文献求助10
4分钟前
4分钟前
狂发文章发布了新的文献求助10
4分钟前
4分钟前
寒冷苗条应助Djnsbj采纳,获得10
4分钟前
小蘑菇应助Djnsbj采纳,获得10
4分钟前
狂发文章完成签到,获得积分10
4分钟前
4分钟前
4分钟前
duxiao发布了新的文献求助10
4分钟前
hongtao发布了新的文献求助10
4分钟前
5分钟前
Mandy发布了新的文献求助10
5分钟前
我好想睡完成签到,获得积分10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155650
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214