A Novel Rolling Bearing Fault Diagnosis and Severity Analysis Method

小波 方位(导航) 模式识别(心理学) 样本熵 振动 熵(时间箭头) 计算机科学 断层(地质) 支持向量机 特征提取 人工智能 控制理论(社会学) 工程类 物理 控制(管理) 量子力学 地震学 地质学
作者
Yinsheng Chen,Tinghao Zhang,Zhongming Luo,Kun Sun
出处
期刊:Applied sciences [MDPI AG]
卷期号:9 (11): 2356-2356 被引量:53
标识
DOI:10.3390/app9112356
摘要

To improve the fault identification accuracy of rolling bearing and effectively analyze the fault severity, a novel rolling bearing fault diagnosis and severity analysis method based on the fast sample entropy, the wavelet packet energy entropy, and a multiclass relevance vector machine is proposed in this paper. A fast sample entropy calculation method based on a kd tree is adopted to improve the real-time performance of fault detection in this paper. In view of the non-linearity and non-stationarity of the vibration signals, the vibration signal of the rolling bearing is decomposed into several sub-signals containing fault information by using a wavelet packet. Then, the energy entropy values of the sub-signals decomposed by the wavelet packet are calculated to generate the feature vectors for describing different fault types and severity levels of rolling bearings. The multiclass relevance vector machine modeled by the feature vectors of different fault types and severity levels is used to realize fault type identification and a fault severity analysis of the bearings. The proposed fault diagnosis and severity analysis method is fully evaluated by experiments. The experimental results demonstrate that the fault detection method based on the sample entropy can effectively detect rolling bearing failure. The fault feature extraction method based on the wavelet packet energy entropy can effectively extract the fault features of vibration signals and a multiclass relevance vector machine can identify the fault type and severity by means of the fault features contained in these signals. Compared with some existing bearing rolling fault diagnosis methods, the proposed method is excellent for fault diagnosis and severity analysis and improves the fault identification rate reaching as high as 99.47%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助123采纳,获得10
1秒前
在水一方应助jory采纳,获得10
1秒前
1秒前
1秒前
uhuh203发布了新的文献求助10
1秒前
lj发布了新的文献求助10
1秒前
坚定的小馒头完成签到 ,获得积分10
2秒前
zouzou发布了新的文献求助10
2秒前
trumning完成签到,获得积分10
2秒前
共享精神应助方方方方方采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
小脚丫发布了新的文献求助10
3秒前
AAA导弹批发李哥完成签到,获得积分10
3秒前
我是老大应助风中的傲安采纳,获得10
3秒前
hooke发布了新的文献求助10
4秒前
KIC发布了新的文献求助10
5秒前
5秒前
5秒前
含蓄若云完成签到,获得积分10
5秒前
5秒前
研友_VZG7GZ应助林二车娜姆采纳,获得30
5秒前
隐形飞雪完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
DDEEE完成签到,获得积分10
7秒前
7秒前
Huanglj完成签到,获得积分10
7秒前
小小发布了新的文献求助30
7秒前
7秒前
小鱼马发布了新的文献求助10
7秒前
朱小燕发布了新的文献求助10
8秒前
weixun完成签到,获得积分10
8秒前
wwf发布了新的文献求助30
8秒前
勤奋弋完成签到,获得积分10
9秒前
希望天下0贩的0应助www采纳,获得10
9秒前
Moxley完成签到,获得积分10
9秒前
一大个太阳完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894