A Novel Rolling Bearing Fault Diagnosis and Severity Analysis Method

小波 方位(导航) 模式识别(心理学) 样本熵 振动 熵(时间箭头) 计算机科学 断层(地质) 支持向量机 特征提取 人工智能 控制理论(社会学) 工程类 控制(管理) 地震学 地质学 物理 量子力学
作者
Yinsheng Chen,Tinghao Zhang,Zhongming Luo,Kun Sun
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:9 (11): 2356-2356 被引量:53
标识
DOI:10.3390/app9112356
摘要

To improve the fault identification accuracy of rolling bearing and effectively analyze the fault severity, a novel rolling bearing fault diagnosis and severity analysis method based on the fast sample entropy, the wavelet packet energy entropy, and a multiclass relevance vector machine is proposed in this paper. A fast sample entropy calculation method based on a kd tree is adopted to improve the real-time performance of fault detection in this paper. In view of the non-linearity and non-stationarity of the vibration signals, the vibration signal of the rolling bearing is decomposed into several sub-signals containing fault information by using a wavelet packet. Then, the energy entropy values of the sub-signals decomposed by the wavelet packet are calculated to generate the feature vectors for describing different fault types and severity levels of rolling bearings. The multiclass relevance vector machine modeled by the feature vectors of different fault types and severity levels is used to realize fault type identification and a fault severity analysis of the bearings. The proposed fault diagnosis and severity analysis method is fully evaluated by experiments. The experimental results demonstrate that the fault detection method based on the sample entropy can effectively detect rolling bearing failure. The fault feature extraction method based on the wavelet packet energy entropy can effectively extract the fault features of vibration signals and a multiclass relevance vector machine can identify the fault type and severity by means of the fault features contained in these signals. Compared with some existing bearing rolling fault diagnosis methods, the proposed method is excellent for fault diagnosis and severity analysis and improves the fault identification rate reaching as high as 99.47%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆包完成签到,获得积分10
1秒前
rorraine_xu完成签到,获得积分10
2秒前
李某某应助123采纳,获得10
3秒前
SUE发布了新的文献求助10
4秒前
4秒前
迷路的问丝完成签到,获得积分20
4秒前
5秒前
Lucas应助一叶扁舟采纳,获得10
5秒前
6秒前
科目三应助cyanpomelo采纳,获得10
8秒前
8秒前
deeferf发布了新的文献求助10
9秒前
9秒前
小魔王发布了新的文献求助10
10秒前
12秒前
zhouyu发布了新的文献求助10
12秒前
12秒前
云是完成签到 ,获得积分10
13秒前
李y梅子完成签到 ,获得积分10
14秒前
ran发布了新的文献求助10
14秒前
ChatGPT发布了新的文献求助10
17秒前
成泰乐发布了新的文献求助10
18秒前
少少少完成签到,获得积分10
18秒前
李宫俊发布了新的文献求助10
18秒前
斑马不一般应助吱呜采纳,获得10
19秒前
19秒前
19秒前
王则华关注了科研通微信公众号
20秒前
ran完成签到,获得积分10
21秒前
Fengyun完成签到,获得积分10
21秒前
10完成签到,获得积分10
22秒前
23秒前
24秒前
sunny完成签到 ,获得积分10
25秒前
852应助圆圆采纳,获得10
25秒前
26秒前
sta发布了新的文献求助30
28秒前
29秒前
30秒前
AR驳回了CodeCraft应助
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941061
求助须知:如何正确求助?哪些是违规求助? 4207141
关于积分的说明 13076618
捐赠科研通 3985902
什么是DOI,文献DOI怎么找? 2182363
邀请新用户注册赠送积分活动 1197920
关于科研通互助平台的介绍 1110256