A Novel Rolling Bearing Fault Diagnosis and Severity Analysis Method

小波 方位(导航) 模式识别(心理学) 样本熵 振动 熵(时间箭头) 计算机科学 断层(地质) 支持向量机 特征提取 人工智能 控制理论(社会学) 工程类 物理 控制(管理) 量子力学 地震学 地质学
作者
Yinsheng Chen,Tinghao Zhang,Zhongming Luo,Kun Sun
出处
期刊:Applied sciences [MDPI AG]
卷期号:9 (11): 2356-2356 被引量:53
标识
DOI:10.3390/app9112356
摘要

To improve the fault identification accuracy of rolling bearing and effectively analyze the fault severity, a novel rolling bearing fault diagnosis and severity analysis method based on the fast sample entropy, the wavelet packet energy entropy, and a multiclass relevance vector machine is proposed in this paper. A fast sample entropy calculation method based on a kd tree is adopted to improve the real-time performance of fault detection in this paper. In view of the non-linearity and non-stationarity of the vibration signals, the vibration signal of the rolling bearing is decomposed into several sub-signals containing fault information by using a wavelet packet. Then, the energy entropy values of the sub-signals decomposed by the wavelet packet are calculated to generate the feature vectors for describing different fault types and severity levels of rolling bearings. The multiclass relevance vector machine modeled by the feature vectors of different fault types and severity levels is used to realize fault type identification and a fault severity analysis of the bearings. The proposed fault diagnosis and severity analysis method is fully evaluated by experiments. The experimental results demonstrate that the fault detection method based on the sample entropy can effectively detect rolling bearing failure. The fault feature extraction method based on the wavelet packet energy entropy can effectively extract the fault features of vibration signals and a multiclass relevance vector machine can identify the fault type and severity by means of the fault features contained in these signals. Compared with some existing bearing rolling fault diagnosis methods, the proposed method is excellent for fault diagnosis and severity analysis and improves the fault identification rate reaching as high as 99.47%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助HE采纳,获得10
刚刚
微笑的绿蝶完成签到,获得积分10
1秒前
娜娜酱油发布了新的文献求助10
1秒前
pupucici发布了新的文献求助80
2秒前
Lsmile完成签到 ,获得积分10
2秒前
datiancaihaha发布了新的文献求助10
3秒前
wanghuhu发布了新的文献求助30
3秒前
Mr_Yilu完成签到,获得积分10
4秒前
ad完成签到,获得积分10
4秒前
左惋庭发布了新的文献求助10
5秒前
6秒前
bbanshan发布了新的文献求助10
6秒前
6秒前
打打应助sxmt123456789采纳,获得30
8秒前
小壳儿完成签到 ,获得积分10
8秒前
朝闻道完成签到 ,获得积分10
8秒前
夜泊完成签到,获得积分10
9秒前
9秒前
左惋庭完成签到,获得积分10
10秒前
达不溜完成签到,获得积分20
10秒前
无花果应助娜娜酱油采纳,获得10
10秒前
10秒前
善学以致用应助zyyicu采纳,获得20
11秒前
LZR完成签到,获得积分10
11秒前
12秒前
zjm发布了新的文献求助10
13秒前
dasheenly完成签到,获得积分10
14秒前
顾矜应助lala采纳,获得10
14秒前
14秒前
xixi完成签到,获得积分20
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
zz发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
CodeCraft应助单耳兔采纳,获得10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743755
求助须知:如何正确求助?哪些是违规求助? 5415833
关于积分的说明 15348312
捐赠科研通 4884362
什么是DOI,文献DOI怎么找? 2625769
邀请新用户注册赠送积分活动 1574598
关于科研通互助平台的介绍 1531510