A Novel Rolling Bearing Fault Diagnosis and Severity Analysis Method

小波 方位(导航) 模式识别(心理学) 样本熵 振动 熵(时间箭头) 计算机科学 断层(地质) 支持向量机 特征提取 人工智能 控制理论(社会学) 工程类 物理 控制(管理) 量子力学 地震学 地质学
作者
Yinsheng Chen,Tinghao Zhang,Zhongming Luo,Kun Sun
出处
期刊:Applied sciences [MDPI AG]
卷期号:9 (11): 2356-2356 被引量:53
标识
DOI:10.3390/app9112356
摘要

To improve the fault identification accuracy of rolling bearing and effectively analyze the fault severity, a novel rolling bearing fault diagnosis and severity analysis method based on the fast sample entropy, the wavelet packet energy entropy, and a multiclass relevance vector machine is proposed in this paper. A fast sample entropy calculation method based on a kd tree is adopted to improve the real-time performance of fault detection in this paper. In view of the non-linearity and non-stationarity of the vibration signals, the vibration signal of the rolling bearing is decomposed into several sub-signals containing fault information by using a wavelet packet. Then, the energy entropy values of the sub-signals decomposed by the wavelet packet are calculated to generate the feature vectors for describing different fault types and severity levels of rolling bearings. The multiclass relevance vector machine modeled by the feature vectors of different fault types and severity levels is used to realize fault type identification and a fault severity analysis of the bearings. The proposed fault diagnosis and severity analysis method is fully evaluated by experiments. The experimental results demonstrate that the fault detection method based on the sample entropy can effectively detect rolling bearing failure. The fault feature extraction method based on the wavelet packet energy entropy can effectively extract the fault features of vibration signals and a multiclass relevance vector machine can identify the fault type and severity by means of the fault features contained in these signals. Compared with some existing bearing rolling fault diagnosis methods, the proposed method is excellent for fault diagnosis and severity analysis and improves the fault identification rate reaching as high as 99.47%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
小珂完成签到 ,获得积分10
1秒前
1秒前
陶醉凝丝发布了新的文献求助10
1秒前
1秒前
温暖访枫完成签到,获得积分10
1秒前
bibi5151完成签到,获得积分10
1秒前
zxwz完成签到 ,获得积分10
1秒前
3秒前
3秒前
3秒前
潭深完成签到,获得积分10
3秒前
鲤鱼秋寒发布了新的文献求助10
3秒前
研友_VZG7GZ应助lym97采纳,获得10
4秒前
4秒前
科研通AI6应助Cyber_relic采纳,获得10
4秒前
呆萌笑晴完成签到,获得积分10
4秒前
5秒前
5秒前
Isabel完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
李爱国应助葡萄采纳,获得10
6秒前
6秒前
利奥发布了新的文献求助10
7秒前
maxsis完成签到,获得积分10
7秒前
zxwz关注了科研通微信公众号
7秒前
一点发布了新的文献求助10
7秒前
NexusExplorer应助。.。采纳,获得10
7秒前
双枪林黛玉完成签到,获得积分10
7秒前
7秒前
共享精神应助小烊采纳,获得10
7秒前
8秒前
完美的机器猫完成签到,获得积分20
8秒前
进击的PhD应助lele采纳,获得50
8秒前
研友_ZGDVz8完成签到,获得积分10
9秒前
9秒前
英姑应助遵义阿杜采纳,获得10
9秒前
aoc发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647471
求助须知:如何正确求助?哪些是违规求助? 4773575
关于积分的说明 15039580
捐赠科研通 4806177
什么是DOI,文献DOI怎么找? 2570137
邀请新用户注册赠送积分活动 1527027
关于科研通互助平台的介绍 1486108