Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor

材料科学 微电子 晶体管 场效应晶体管 光电子学 铁电性 纳米技术 相变 电导率 应变工程 工程物理 凝聚态物理 电气工程 化学 电压 物理 工程类 电介质 物理化学
作者
Wenhui Hou,Ahmad Azizimanesh,Arfan Sewaket,Tara Peña,Carla Watson,Ming Liu,Hesam Askari,Stephen M. Wu
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:14 (7): 668-673 被引量:125
标识
DOI:10.1038/s41565-019-0466-2
摘要

The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting ‘on’ state to a non-conducting ‘off’ state. As transistors continue to scale down to increase computational performance, physical limitations from nanoscale field-effect operation begin to cause undesirable current leakage, which is detrimental to the continued advancement of computing1,2. Using a fundamentally different mechanism of operation, we show that through nanoscale strain engineering with thin films and ferroelectrics the transition metal dichalcogenide MoTe2 can be reversibly switched with electric-field-induced strain between the 1T′-MoTe2 (semimetallic) phase to a semiconducting MoTe2 phase in a field-effect transistor geometry. This alternative mechanism for transistor switching sidesteps all the static and dynamic power consumption problems in conventional field-effect transistors3,4. Using strain, we achieve large non-volatile changes in channel conductivity (Gon/Goff ≈ 107 versus Gon/Goff ≈ 0.04 in the control device) at room temperature. Ferroelectric devices offer the potential to reach sub-nanosecond non-volatile strain switching at the attojoule/bit level5–7, with immediate applications in ultrafast low-power non-volatile logic and memory8 while also transforming the landscape of computational architectures because conventional power, speed and volatility considerations for microelectronics may no longer exist. Strain-induced phase change in MoTe2 enables reversible channel conductivity switching in a field-effect transistor geometry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张潇潇发布了新的文献求助10
1秒前
1秒前
3秒前
阿文完成签到 ,获得积分20
3秒前
11111发布了新的文献求助10
4秒前
冰美式发布了新的文献求助10
5秒前
小高同学发布了新的文献求助10
7秒前
张潇潇完成签到,获得积分10
8秒前
传奇3应助小高同学采纳,获得10
10秒前
涂楚捷发布了新的文献求助20
11秒前
爆米花应助11111采纳,获得10
12秒前
13秒前
13秒前
完美世界应助求知小生采纳,获得10
14秒前
14秒前
14秒前
halosheep完成签到,获得积分10
16秒前
17秒前
963发布了新的文献求助10
17秒前
HC完成签到,获得积分10
18秒前
远道发布了新的文献求助10
19秒前
halosheep发布了新的文献求助10
19秒前
清新晨完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
HC发布了新的文献求助10
24秒前
ding应助963采纳,获得10
25秒前
26秒前
26秒前
26秒前
辛勤夜安完成签到 ,获得积分10
26秒前
充电宝应助盐植物采纳,获得10
27秒前
求知小生完成签到,获得积分10
27秒前
西陆完成签到,获得积分10
27秒前
27秒前
freedom发布了新的文献求助10
27秒前
29秒前
29秒前
薄荷味完成签到 ,获得积分10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138303
求助须知:如何正确求助?哪些是违规求助? 2789341
关于积分的说明 7790881
捐赠科研通 2445588
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625975
版权声明 601065