已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluating Protein Transfer Learning with TAPE

人工智能 机器学习 一般化 计算机科学 任务(项目管理) 集合(抽象数据类型) 代表(政治) 学习迁移 领域(数学) 监督学习 编码(集合论) 试验装置 人工神经网络 工程类 数学分析 数学 系统工程 政治 法学 政治学 纯数学 程序设计语言
作者
Roshan Rao,Nicholas Bhattacharya,Neil Thomas,Yan Duan,Xi Chen,John Canny,Pieter Abbeel,Yun S. Song
标识
DOI:10.1101/676825
摘要

Abstract Protein modeling is an increasingly popular area of machine learning research. Semi-supervised learning has emerged as an important paradigm in protein modeling due to the high cost of acquiring supervised protein labels, but the current literature is fragmented when it comes to datasets and standardized evaluation techniques. To facilitate progress in this field, we introduce the Tasks Assessing Protein Embeddings (TAPE), a set of five biologically relevant semi-supervised learning tasks spread across different domains of protein biology. We curate tasks into specific training, validation, and test splits to ensure that each task tests biologically relevant generalization that transfers to real-life scenarios. We bench-mark a range of approaches to semi-supervised protein representation learning, which span recent work as well as canonical sequence learning techniques. We find that self-supervised pretraining is helpful for almost all models on all tasks, more than doubling performance in some cases. Despite this increase, in several cases features learned by self-supervised pretraining still lag behind features extracted by state-of-the-art non-neural techniques. This gap in performance suggests a huge opportunity for innovative architecture design and improved modeling paradigms that better capture the signal in biological sequences. TAPE will help the machine learning community focus effort on scientifically relevant problems. Toward this end, all data and code used to run these experiments are available at https://github.com/songlab-cal/tape .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuebaoji完成签到,获得积分10
刚刚
SciGPT应助Biao采纳,获得10
刚刚
NexusExplorer应助L过过过采纳,获得10
1秒前
1秒前
1秒前
日富一日的fighter完成签到,获得积分10
2秒前
代桃完成签到,获得积分10
3秒前
唠叨的萍发布了新的文献求助10
3秒前
5秒前
5秒前
6秒前
称心凡之发布了新的文献求助10
6秒前
大吱吱发布了新的文献求助10
8秒前
YOGA1115发布了新的文献求助10
12秒前
鹏程万里发布了新的文献求助10
13秒前
13秒前
16秒前
华仔应助hua采纳,获得10
16秒前
17秒前
薄荷梨完成签到 ,获得积分10
18秒前
无花果应助孤独发卡采纳,获得10
18秒前
刘一完成签到,获得积分10
20秒前
20秒前
炙热冰蓝发布了新的文献求助10
21秒前
21秒前
lilin发布了新的文献求助10
21秒前
xlll发布了新的文献求助10
21秒前
Hello应助zzff采纳,获得10
23秒前
活力冬日发布了新的文献求助10
23秒前
24秒前
FashionBoy应助科研通管家采纳,获得30
25秒前
Evy应助科研通管家采纳,获得20
25秒前
烟花应助科研通管家采纳,获得30
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
无花果应助科研通管家采纳,获得30
26秒前
26秒前
Hello应助科研通管家采纳,获得10
26秒前
Evy应助科研通管家采纳,获得20
26秒前
小二郎应助科研通管家采纳,获得10
26秒前
开朗邪欢发布了新的文献求助10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580080
求助须知:如何正确求助?哪些是违规求助? 3149773
关于积分的说明 9478663
捐赠科研通 2851026
什么是DOI,文献DOI怎么找? 1567649
邀请新用户注册赠送积分活动 734134
科研通“疑难数据库(出版商)”最低求助积分说明 720490