Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control

电化学 材料科学 过渡金属 氧化物 阴极 储能 纳米技术 化学工程 锂(药物) 电极 冶金 化学 物理化学 催化作用 功率(物理) 热力学 物理 工程类 内分泌学 医学 生物化学
作者
Jiaxin Zheng,Yaokun Ye,Tongchao Liu,Yinguo Xiao,Chongmin Wang,Feng Wang,Feng Pan
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (8): 2201-2209 被引量:398
标识
DOI:10.1021/acs.accounts.9b00033
摘要

Lithium ion batteries (LIBs) not only power most of today's hybrid electric vehicles (HEV) and electric vehicles (EV) but also are considered as a promising system for grid-level storage. Large-scale applications for LIBs require substantial improvement in energy density, cost, and lifetime. Layered lithium transition metal (TM) oxides, in particular, Li(NixMnyCoz)O2 (NMC, x + y + z = 1) are the most promising candidates as cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety. In order to further boost Li storage capacity, a great deal of attention has been directed toward developing Ni-rich layered TM oxides. However, structural disorder as a result of Ni/Li exchange in octahedral sites becomes a critical issue when Ni content increases to high values, as it leads to a detrimental effect on Li diffusivity, cycling stability, first-cycle efficiency, and overall electrode performance. Increasing effort has been dedicated to improving the electrochemical performance of layered TM oxides via reduction of cationic mixing. Therefore, it is important to summarize this research field and provide in-depth insight into the impact of Ni/Li disordering on electrochemical characteristics in layered TM oxides and its origin to accelerate the future development of layered TM oxides with high performance. In this Account, we start by introducing the Ni/Li disordering in LiNiO2, the experimental characterization of Ni/Li disordering, and analyzing the impact of Ni/Li disordering on electrochemical characteristics of layered TM oxides. The antisite Ni in the Li layer can limit the rate performance by impeding the Li ion transport. It will also degrade the cycling stability by inducing anisotropic stress in the bulk structure. Nevertheless, the antisite Ni ions do not always bring drawbacks to the electrochemical performance; some studies including our works found that it can improve the thermal stability and the cycling structure stability of Ni-rich NMC materials. We next discuss the driving forces and the kinetic advantages accounting for the Ni/Li exchange and conclude that the steric effect of cation size and the magnetic interactions between TM cations are the two main driving forces to promote the Ni/Li exchange during synthesis and the electrochemical cycling, and the low energy barrier of Ni2+ migration from the 3a site in the TM layer to the 3b site in the Li layer further provides a kinetic advantage. Based on this understanding, we then review the progress made to control the Ni/Li disordering through three main ways: (i) suppressing the driving force from the steric effect by ion exchange; (ii) tuning the magnetic interaction by cationic substitution; (iii) kinetically controlling Ni migration. Finally, our brief outlook on the future development of layered TM oxides with controlled Ni/Li disordering is provided. It is believed that this Account will provide significant understanding and inspirations toward developing high-performance layered TM oxide cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大晨完成签到,获得积分10
刚刚
哈哈哈haha发布了新的文献求助20
1秒前
cc发布了新的文献求助10
1秒前
Yolo发布了新的文献求助10
1秒前
1秒前
allenice完成签到,获得积分10
1秒前
2秒前
2秒前
音乐发布了新的文献求助10
2秒前
英姑应助科研通管家采纳,获得10
3秒前
华仔应助沙拉采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
Owen应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得30
4秒前
FashionBoy应助科研通管家采纳,获得30
4秒前
Orange应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
香蕉觅云应助夏夏采纳,获得10
4秒前
英俊的铭应助夏夏采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
万能图书馆应助夏夏采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
科研通AI5应助夏夏采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
赘婿应助夏夏采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
cc应助夏夏采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
yun尘世应助科研通管家采纳,获得10
5秒前
仿生人完成签到,获得积分10
5秒前
CodeCraft应助yxy采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762