亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control

电化学 材料科学 过渡金属 氧化物 阴极 储能 纳米技术 化学工程 锂(药物) 电极 冶金 化学 物理化学 催化作用 功率(物理) 热力学 物理 工程类 内分泌学 医学 生物化学
作者
Jiaxin Zheng,Yaokun Ye,Tongchao Liu,Yinguo Xiao,Chongmin Wang,Feng Wang,Feng Pan
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (8): 2201-2209 被引量:450
标识
DOI:10.1021/acs.accounts.9b00033
摘要

Lithium ion batteries (LIBs) not only power most of today's hybrid electric vehicles (HEV) and electric vehicles (EV) but also are considered as a promising system for grid-level storage. Large-scale applications for LIBs require substantial improvement in energy density, cost, and lifetime. Layered lithium transition metal (TM) oxides, in particular, Li(NixMnyCoz)O2 (NMC, x + y + z = 1) are the most promising candidates as cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety. In order to further boost Li storage capacity, a great deal of attention has been directed toward developing Ni-rich layered TM oxides. However, structural disorder as a result of Ni/Li exchange in octahedral sites becomes a critical issue when Ni content increases to high values, as it leads to a detrimental effect on Li diffusivity, cycling stability, first-cycle efficiency, and overall electrode performance. Increasing effort has been dedicated to improving the electrochemical performance of layered TM oxides via reduction of cationic mixing. Therefore, it is important to summarize this research field and provide in-depth insight into the impact of Ni/Li disordering on electrochemical characteristics in layered TM oxides and its origin to accelerate the future development of layered TM oxides with high performance. In this Account, we start by introducing the Ni/Li disordering in LiNiO2, the experimental characterization of Ni/Li disordering, and analyzing the impact of Ni/Li disordering on electrochemical characteristics of layered TM oxides. The antisite Ni in the Li layer can limit the rate performance by impeding the Li ion transport. It will also degrade the cycling stability by inducing anisotropic stress in the bulk structure. Nevertheless, the antisite Ni ions do not always bring drawbacks to the electrochemical performance; some studies including our works found that it can improve the thermal stability and the cycling structure stability of Ni-rich NMC materials. We next discuss the driving forces and the kinetic advantages accounting for the Ni/Li exchange and conclude that the steric effect of cation size and the magnetic interactions between TM cations are the two main driving forces to promote the Ni/Li exchange during synthesis and the electrochemical cycling, and the low energy barrier of Ni2+ migration from the 3a site in the TM layer to the 3b site in the Li layer further provides a kinetic advantage. Based on this understanding, we then review the progress made to control the Ni/Li disordering through three main ways: (i) suppressing the driving force from the steric effect by ion exchange; (ii) tuning the magnetic interaction by cationic substitution; (iii) kinetically controlling Ni migration. Finally, our brief outlook on the future development of layered TM oxides with controlled Ni/Li disordering is provided. It is believed that this Account will provide significant understanding and inspirations toward developing high-performance layered TM oxide cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
16秒前
38秒前
Galri完成签到 ,获得积分10
39秒前
Oxygen发布了新的文献求助10
43秒前
Oxygen完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
chentao发布了新的文献求助10
1分钟前
1分钟前
种田发布了新的文献求助10
1分钟前
Mong那粒沙完成签到,获得积分10
1分钟前
丘比特应助Wednesday Chong采纳,获得10
1分钟前
keyan发布了新的文献求助10
2分钟前
keyan完成签到,获得积分10
3分钟前
dkm完成签到,获得积分10
3分钟前
souther完成签到,获得积分0
3分钟前
小蘑菇应助dkm采纳,获得10
3分钟前
laber应助dagangwood采纳,获得50
4分钟前
理理完成签到 ,获得积分10
4分钟前
笨蛋美女完成签到 ,获得积分10
4分钟前
Nann完成签到 ,获得积分10
5分钟前
5分钟前
可颂歌发布了新的文献求助30
5分钟前
西伯利亚老母猪完成签到,获得积分10
5分钟前
草木完成签到 ,获得积分20
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
Lucas应助愤怒的千易采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
yykl完成签到 ,获得积分10
7分钟前
清脆映梦完成签到,获得积分10
8分钟前
8分钟前
8分钟前
小马甲应助Doctor采纳,获得10
9分钟前
9分钟前
彭于晏应助科研通管家采纳,获得10
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4974040
求助须知:如何正确求助?哪些是违规求助? 4229319
关于积分的说明 13172485
捐赠科研通 4018364
什么是DOI,文献DOI怎么找? 2198901
邀请新用户注册赠送积分活动 1211464
关于科研通互助平台的介绍 1126662