亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning–based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses

医学 人工智能 再现性 无线电技术 放射科 核医学 计算机科学 数学 统计
作者
Jooae Choe,Sang Min Lee,Kyung‐Hyun Do,Gaeun Lee,June‐Goo Lee,Sang Min Lee,Joon Beom Seo
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (2): 365-373 被引量:253
标识
DOI:10.1148/radiol.2019181960
摘要

Background Intratumor heterogeneity in lung cancer may influence outcomes. CT radiomics seeks to assess tumor features to provide detailed imaging features. However, CT radiomic features vary according to the reconstruction kernel used for image generation. Purpose To investigate the effect of different reconstruction kernels on radiomic features and assess whether image conversion using a convolutional neural network (CNN) could improve reproducibility of radiomic features between different kernels. Materials and Methods In this retrospective analysis, patients underwent non–contrast material–enhanced and contrast material–enhanced axial chest CT with soft kernel (B30f) and sharp kernel (B50f) reconstruction using a single CT scanner from April to June 2017. To convert different kernels without sinogram, the CNN model was developed using residual learning and an end-to-end way. Kernel-converted images were generated, from B30f to B50f and from B50f to B30f. Pulmonary nodules or masses were semiautomatically segmented and 702 radiomic features (tumor intensity, texture, and wavelet features) were extracted. Measurement variability in radiomic features was evaluated using the concordance correlation coefficient (CCC). Results A total of 104 patients were studied, including 54 women and 50 men, with pulmonary nodules or masses (mean age, 63.2 years ± 10.5). The CCC between two readers using the same kernel was 0.92, and 592 of 702 (84.3%) of the radiomic features were reproducible (CCC ≥ 0.85); using different kernels, the CCC was 0.38 and only 107 of 702 (15.2%) of the radiomic features were reliable. Texture features and wavelet features were predominantly affected by reconstruction kernel (CCC, from 0.88 to 0.61 for texture features and from 0.92 to 0.35 for wavelet features). After applying image conversion, CCC improved to 0.84 and 403 of 702 (57.4%) radiomic features were reproducible (CCC, 0.85 for texture features and 0.84 for wavelet features). Conclusion Chest CT image conversion using a convolutional neural network effectively reduced the effect of two different reconstruction kernels and may improve the reproducibility of radiomic features in pulmonary nodules or masses. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Park in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
44秒前
HD发布了新的文献求助10
50秒前
柯语雪完成签到 ,获得积分10
50秒前
Bio应助倪妮采纳,获得30
1分钟前
科研通AI6应助倪妮采纳,获得30
1分钟前
领导范儿应助倪妮采纳,获得10
1分钟前
charih完成签到 ,获得积分10
1分钟前
1分钟前
Magali发布了新的文献求助10
1分钟前
无情的水香完成签到 ,获得积分10
1分钟前
lxfthu发布了新的文献求助10
1分钟前
LJ完成签到 ,获得积分10
1分钟前
1分钟前
福尔摩云完成签到,获得积分10
1分钟前
呼延水云发布了新的文献求助30
1分钟前
yinlao完成签到,获得积分0
1分钟前
1分钟前
2分钟前
WSY完成签到 ,获得积分10
2分钟前
甜甜的紫菜完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
科研通AI5应助羞涩的寒松采纳,获得10
3分钟前
Chouvikin完成签到,获得积分10
3分钟前
3分钟前
ZanE完成签到,获得积分10
3分钟前
裂头蚴发布了新的文献求助30
3分钟前
在水一方应助NanFeng采纳,获得10
4分钟前
淡然绝山发布了新的文献求助10
4分钟前
重庆森林完成签到,获得积分20
5分钟前
淡然绝山完成签到,获得积分10
5分钟前
5分钟前
5分钟前
zhangyu6160完成签到,获得积分10
5分钟前
5分钟前
zhangyu6160发布了新的文献求助10
5分钟前
裂头蚴完成签到,获得积分10
5分钟前
Orange应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127088
求助须知:如何正确求助?哪些是违规求助? 4330255
关于积分的说明 13493143
捐赠科研通 4165747
什么是DOI,文献DOI怎么找? 2283554
邀请新用户注册赠送积分活动 1284573
关于科研通互助平台的介绍 1224457