Deep Learning–based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses

医学 人工智能 再现性 无线电技术 放射科 核医学 计算机科学 数学 统计
作者
Jooae Choe,Sang Min Lee,Kyung‐Hyun Do,Gaeun Lee,June‐Goo Lee,Sang Min Lee,Joon Beom Seo
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (2): 365-373 被引量:253
标识
DOI:10.1148/radiol.2019181960
摘要

Background Intratumor heterogeneity in lung cancer may influence outcomes. CT radiomics seeks to assess tumor features to provide detailed imaging features. However, CT radiomic features vary according to the reconstruction kernel used for image generation. Purpose To investigate the effect of different reconstruction kernels on radiomic features and assess whether image conversion using a convolutional neural network (CNN) could improve reproducibility of radiomic features between different kernels. Materials and Methods In this retrospective analysis, patients underwent non–contrast material–enhanced and contrast material–enhanced axial chest CT with soft kernel (B30f) and sharp kernel (B50f) reconstruction using a single CT scanner from April to June 2017. To convert different kernels without sinogram, the CNN model was developed using residual learning and an end-to-end way. Kernel-converted images were generated, from B30f to B50f and from B50f to B30f. Pulmonary nodules or masses were semiautomatically segmented and 702 radiomic features (tumor intensity, texture, and wavelet features) were extracted. Measurement variability in radiomic features was evaluated using the concordance correlation coefficient (CCC). Results A total of 104 patients were studied, including 54 women and 50 men, with pulmonary nodules or masses (mean age, 63.2 years ± 10.5). The CCC between two readers using the same kernel was 0.92, and 592 of 702 (84.3%) of the radiomic features were reproducible (CCC ≥ 0.85); using different kernels, the CCC was 0.38 and only 107 of 702 (15.2%) of the radiomic features were reliable. Texture features and wavelet features were predominantly affected by reconstruction kernel (CCC, from 0.88 to 0.61 for texture features and from 0.92 to 0.35 for wavelet features). After applying image conversion, CCC improved to 0.84 and 403 of 702 (57.4%) radiomic features were reproducible (CCC, 0.85 for texture features and 0.84 for wavelet features). Conclusion Chest CT image conversion using a convolutional neural network effectively reduced the effect of two different reconstruction kernels and may improve the reproducibility of radiomic features in pulmonary nodules or masses. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Park in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古药完成签到,获得积分10
刚刚
drjim完成签到,获得积分10
1秒前
柚子发布了新的文献求助10
1秒前
我的账号完成签到,获得积分10
1秒前
1秒前
研友_89jWGL完成签到,获得积分10
2秒前
2秒前
过客发布了新的文献求助50
3秒前
杨杰发布了新的文献求助10
3秒前
半生瓜完成签到,获得积分10
3秒前
清脆半邪完成签到,获得积分10
3秒前
来了完成签到,获得积分10
3秒前
starry完成签到,获得积分10
4秒前
大模型应助violetlishu采纳,获得20
4秒前
zz发布了新的文献求助10
4秒前
张泽宇完成签到,获得积分10
5秒前
唠叨的白曼完成签到,获得积分10
5秒前
香蕉觅云应助Jerry采纳,获得20
5秒前
NexusExplorer应助ZHB采纳,获得30
6秒前
6秒前
6秒前
小明应助落落采纳,获得10
6秒前
可爱的函函应助Sera采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
英姑应助chengs采纳,获得10
7秒前
火星上的雨柏完成签到 ,获得积分10
7秒前
科研通AI5应助jyyg采纳,获得30
8秒前
芦泸发布了新的文献求助10
8秒前
JamesPei应助不来也不去采纳,获得10
9秒前
聚砂成塔完成签到,获得积分10
9秒前
大鸟依人完成签到 ,获得积分10
10秒前
勇敢虫子不怕困难完成签到,获得积分10
10秒前
cc完成签到,获得积分10
10秒前
Chihiro完成签到 ,获得积分10
10秒前
aa完成签到,获得积分10
11秒前
小刘完成签到,获得积分10
11秒前
科研通AI6应助文建武采纳,获得10
11秒前
orixero应助吴圳采纳,获得10
11秒前
bernie1023完成签到,获得积分10
12秒前
Akim应助我的账号采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426