Deep Learning–based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses

医学 人工智能 再现性 无线电技术 放射科 核医学 计算机科学 数学 统计
作者
Jooae Choe,Sang Min Lee,Kyung‐Hyun Do,Gaeun Lee,June‐Goo Lee,Sang Min Lee,Joon Beom Seo
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (2): 365-373 被引量:253
标识
DOI:10.1148/radiol.2019181960
摘要

Background Intratumor heterogeneity in lung cancer may influence outcomes. CT radiomics seeks to assess tumor features to provide detailed imaging features. However, CT radiomic features vary according to the reconstruction kernel used for image generation. Purpose To investigate the effect of different reconstruction kernels on radiomic features and assess whether image conversion using a convolutional neural network (CNN) could improve reproducibility of radiomic features between different kernels. Materials and Methods In this retrospective analysis, patients underwent non–contrast material–enhanced and contrast material–enhanced axial chest CT with soft kernel (B30f) and sharp kernel (B50f) reconstruction using a single CT scanner from April to June 2017. To convert different kernels without sinogram, the CNN model was developed using residual learning and an end-to-end way. Kernel-converted images were generated, from B30f to B50f and from B50f to B30f. Pulmonary nodules or masses were semiautomatically segmented and 702 radiomic features (tumor intensity, texture, and wavelet features) were extracted. Measurement variability in radiomic features was evaluated using the concordance correlation coefficient (CCC). Results A total of 104 patients were studied, including 54 women and 50 men, with pulmonary nodules or masses (mean age, 63.2 years ± 10.5). The CCC between two readers using the same kernel was 0.92, and 592 of 702 (84.3%) of the radiomic features were reproducible (CCC ≥ 0.85); using different kernels, the CCC was 0.38 and only 107 of 702 (15.2%) of the radiomic features were reliable. Texture features and wavelet features were predominantly affected by reconstruction kernel (CCC, from 0.88 to 0.61 for texture features and from 0.92 to 0.35 for wavelet features). After applying image conversion, CCC improved to 0.84 and 403 of 702 (57.4%) radiomic features were reproducible (CCC, 0.85 for texture features and 0.84 for wavelet features). Conclusion Chest CT image conversion using a convolutional neural network effectively reduced the effect of two different reconstruction kernels and may improve the reproducibility of radiomic features in pulmonary nodules or masses. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Park in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋宋发布了新的文献求助10
刚刚
兴奋的定帮应助zgh采纳,获得10
1秒前
稗子发布了新的文献求助10
2秒前
lixiangrui110发布了新的文献求助10
2秒前
糖璃关注了科研通微信公众号
2秒前
xxiao完成签到,获得积分20
2秒前
2秒前
超帅觅柔完成签到,获得积分10
3秒前
面壁思过应助haha采纳,获得10
5秒前
5秒前
libling完成签到,获得积分10
5秒前
CodeCraft应助小不溜采纳,获得10
5秒前
zxc完成签到,获得积分20
7秒前
lixiangrui110完成签到,获得积分10
8秒前
8秒前
34完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
草莓奶昔完成签到 ,获得积分10
10秒前
源缘完成签到 ,获得积分10
11秒前
英俊的铭应助稗子采纳,获得10
11秒前
zhaoyuli发布了新的文献求助10
11秒前
14秒前
15秒前
15秒前
16秒前
16秒前
JamesPei应助比巴卜采纳,获得10
16秒前
Lucas应助沟通亿心采纳,获得10
16秒前
lizzie发布了新的文献求助10
17秒前
酷波er应助亮亮采纳,获得10
18秒前
伶俐雅柏完成签到,获得积分10
18秒前
糖璃发布了新的文献求助10
19秒前
啊啊发布了新的文献求助10
19秒前
longlong发布了新的文献求助10
20秒前
夏xia完成签到 ,获得积分10
21秒前
李科研发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975755
求助须知:如何正确求助?哪些是违规求助? 3520108
关于积分的说明 11200829
捐赠科研通 3256492
什么是DOI,文献DOI怎么找? 1798298
邀请新用户注册赠送积分活动 877509
科研通“疑难数据库(出版商)”最低求助积分说明 806403