已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning–based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses

医学 人工智能 一致相关系数 核(代数) 模式识别(心理学) 再现性 卷积神经网络 无线电技术 放射科 核医学 迭代重建 计算机科学 数学 统计 组合数学
作者
Jooae Choe,Sang Min Lee,Kyung‐Hyun Do,Ga Eun Lee,June‐Goo Lee,Sang Min Lee,Joon Beom Seo
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (2): 365-373 被引量:207
标识
DOI:10.1148/radiol.2019181960
摘要

Background Intratumor heterogeneity in lung cancer may influence outcomes. CT radiomics seeks to assess tumor features to provide detailed imaging features. However, CT radiomic features vary according to the reconstruction kernel used for image generation. Purpose To investigate the effect of different reconstruction kernels on radiomic features and assess whether image conversion using a convolutional neural network (CNN) could improve reproducibility of radiomic features between different kernels. Materials and Methods In this retrospective analysis, patients underwent non-contrast material-enhanced and contrast material-enhanced axial chest CT with soft kernel (B30f) and sharp kernel (B50f) reconstruction using a single CT scanner from April to June 2017. To convert different kernels without sinogram, the CNN model was developed using residual learning and an end-to-end way. Kernel-converted images were generated, from B30f to B50f and from B50f to B30f. Pulmonary nodules or masses were semiautomatically segmented and 702 radiomic features (tumor intensity, texture, and wavelet features) were extracted. Measurement variability in radiomic features was evaluated using the concordance correlation coefficient (CCC). Results A total of 104 patients were studied, including 54 women and 50 men, with pulmonary nodules or masses (mean age, 63.2 years ± 10.5). The CCC between two readers using the same kernel was 0.92, and 592 of 702 (84.3%) of the radiomic features were reproducible (CCC ≥ 0.85); using different kernels, the CCC was 0.38 and only 107 of 702 (15.2%) of the radiomic features were reliable. Texture features and wavelet features were predominantly affected by reconstruction kernel (CCC, from 0.88 to 0.61 for texture features and from 0.92 to 0.35 for wavelet features). After applying image conversion, CCC improved to 0.84 and 403 of 702 (57.4%) radiomic features were reproducible (CCC, 0.85 for texture features and 0.84 for wavelet features). Conclusion Chest CT image conversion using a convolutional neural network effectively reduced the effect of two different reconstruction kernels and may improve the reproducibility of radiomic features in pulmonary nodules or masses. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Park in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燊yy发布了新的文献求助30
3秒前
shadow完成签到,获得积分10
4秒前
8秒前
8秒前
星辰大海应助Shu采纳,获得10
8秒前
汉堡包应助apollo3232采纳,获得10
9秒前
打打应助MLL采纳,获得10
12秒前
苗轩发布了新的文献求助20
13秒前
dragonborn完成签到,获得积分20
13秒前
在水一方应助dragonborn采纳,获得10
16秒前
幽默雨完成签到,获得积分10
17秒前
17秒前
huminjie完成签到 ,获得积分10
19秒前
20秒前
斯文败类应助zhouzhou采纳,获得10
22秒前
23秒前
24秒前
24秒前
dpp发布了新的文献求助10
25秒前
薄荷完成签到 ,获得积分10
25秒前
pp完成签到,获得积分20
27秒前
宋虹发布了新的文献求助10
29秒前
三杯酒好关注了科研通微信公众号
30秒前
在水一方应助xiaoguo采纳,获得10
30秒前
小马甲应助XhuaQye采纳,获得10
31秒前
31秒前
条条123发布了新的文献求助10
31秒前
33秒前
充电宝应助wbbbb采纳,获得10
33秒前
爆米花应助McchainQ采纳,获得10
34秒前
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
35秒前
雪白元灵发布了新的文献求助10
37秒前
38秒前
大模型应助宋虹采纳,获得10
38秒前
笃定完成签到 ,获得积分10
39秒前
39秒前
39秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125744
求助须知:如何正确求助?哪些是违规求助? 2776037
关于积分的说明 7728973
捐赠科研通 2431507
什么是DOI,文献DOI怎么找? 1292095
科研通“疑难数据库(出版商)”最低求助积分说明 622375
版权声明 600380