亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning–based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses

医学 人工智能 再现性 无线电技术 放射科 核医学 计算机科学 数学 统计
作者
Jooae Choe,Sang Min Lee,Kyung‐Hyun Do,Gaeun Lee,June‐Goo Lee,Sang Min Lee,Joon Beom Seo
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (2): 365-373 被引量:253
标识
DOI:10.1148/radiol.2019181960
摘要

Background Intratumor heterogeneity in lung cancer may influence outcomes. CT radiomics seeks to assess tumor features to provide detailed imaging features. However, CT radiomic features vary according to the reconstruction kernel used for image generation. Purpose To investigate the effect of different reconstruction kernels on radiomic features and assess whether image conversion using a convolutional neural network (CNN) could improve reproducibility of radiomic features between different kernels. Materials and Methods In this retrospective analysis, patients underwent non–contrast material–enhanced and contrast material–enhanced axial chest CT with soft kernel (B30f) and sharp kernel (B50f) reconstruction using a single CT scanner from April to June 2017. To convert different kernels without sinogram, the CNN model was developed using residual learning and an end-to-end way. Kernel-converted images were generated, from B30f to B50f and from B50f to B30f. Pulmonary nodules or masses were semiautomatically segmented and 702 radiomic features (tumor intensity, texture, and wavelet features) were extracted. Measurement variability in radiomic features was evaluated using the concordance correlation coefficient (CCC). Results A total of 104 patients were studied, including 54 women and 50 men, with pulmonary nodules or masses (mean age, 63.2 years ± 10.5). The CCC between two readers using the same kernel was 0.92, and 592 of 702 (84.3%) of the radiomic features were reproducible (CCC ≥ 0.85); using different kernels, the CCC was 0.38 and only 107 of 702 (15.2%) of the radiomic features were reliable. Texture features and wavelet features were predominantly affected by reconstruction kernel (CCC, from 0.88 to 0.61 for texture features and from 0.92 to 0.35 for wavelet features). After applying image conversion, CCC improved to 0.84 and 403 of 702 (57.4%) radiomic features were reproducible (CCC, 0.85 for texture features and 0.84 for wavelet features). Conclusion Chest CT image conversion using a convolutional neural network effectively reduced the effect of two different reconstruction kernels and may improve the reproducibility of radiomic features in pulmonary nodules or masses. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Park in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三三完成签到 ,获得积分10
1秒前
herewish完成签到,获得积分20
10秒前
可悲的牛马完成签到,获得积分20
17秒前
徐doc完成签到 ,获得积分10
35秒前
卑微学术人完成签到 ,获得积分10
44秒前
tudounaodai完成签到,获得积分10
50秒前
1分钟前
tudounaodai发布了新的文献求助30
1分钟前
李健应助奥特曼采纳,获得10
1分钟前
1分钟前
1分钟前
lixuebin完成签到 ,获得积分10
1分钟前
2分钟前
谷粱紫槐发布了新的文献求助10
2分钟前
汉堡包应助灵巧夜天采纳,获得10
2分钟前
mangle完成签到,获得积分10
2分钟前
2分钟前
2分钟前
不能随便完成签到,获得积分10
3分钟前
追三完成签到 ,获得积分10
3分钟前
李李原上草完成签到 ,获得积分10
3分钟前
天天好心覃完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
归尘发布了新的文献求助10
3分钟前
3分钟前
绝世冰淇淋完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Oldgorden发布了新的文献求助10
4分钟前
4分钟前
英姑应助科研通管家采纳,获得10
4分钟前
133完成签到,获得积分10
4分钟前
4分钟前
133发布了新的文献求助10
5分钟前
楚醨发布了新的文献求助10
5分钟前
Oldgorden完成签到,获得积分10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749913
求助须知:如何正确求助?哪些是违规求助? 3293171
关于积分的说明 10079984
捐赠科研通 3008527
什么是DOI,文献DOI怎么找? 1652273
邀请新用户注册赠送积分活动 787330
科研通“疑难数据库(出版商)”最低求助积分说明 752059