Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery

相似性(几何) 虚拟筛选 药物发现 计算机科学 化学信息学 代表(政治) 人工智能 生物系统 数据挖掘 模式识别(心理学) 计算生物学 化学 生物信息学 计算化学 生物 图像(数学) 政治 政治学 法学
作者
Ashutosh Kumar,Kam Y. J. Zhang
出处
期刊:Frontiers in Chemistry [Frontiers Media SA]
卷期号:6 被引量:165
标识
DOI:10.3389/fchem.2018.00315
摘要

Molecular similarity is a key concept in drug discovery. It is based on the assumption that structurally similar molecules frequently have similar properties. Assessment of similarity between small molecules has been highly effective in the discovery and development of various drugs. Especially, two-dimensional (2D) similarity approaches have been quite popular due to their simplicity, accuracy and efficiency. Recently, the focus has been shifted towards the development of methods involving the representation and comparison of three-dimensional (3D) conformation of small molecules. Among the 3D similarity methods, evaluation of shape similarity is now gaining attention for its application not only in virtual screening but also in molecular target prediction, drug repurposing and scaffold hopping. A wide range of methods have been developed to describe molecular shape and to determine the shape similarity between small molecules. The most widely used methods include atom distance-based methods, surface-based approaches such as spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based representations. Several of these methods demonstrated excellent virtual screening performance not only retrospectively but also prospectively. In addition to methods assessing the similarity between small molecules, shape similarity approaches have been developed to compare shapes of protein structures and binding pockets. Additionally, shape comparisons between atomic models and 3D density maps allowed the fitting of atomic models into cryo-electron microscopy maps. This review aims to summarize the methodological advances in shape similarity assessment highlighting advantages, disadvantages and their application in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaoyu发布了新的文献求助10
1秒前
飞鱼完成签到,获得积分10
1秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得30
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
小鲸鱼应助科研通管家采纳,获得10
2秒前
Adrenaline完成签到,获得积分10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
毛豆应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得20
3秒前
Orange应助科研通管家采纳,获得10
3秒前
3秒前
xiaomeng完成签到 ,获得积分10
4秒前
wmwm发布了新的文献求助10
4秒前
李爱国应助李w采纳,获得10
4秒前
唐山夕完成签到,获得积分20
7秒前
Bing完成签到,获得积分10
8秒前
8秒前
10秒前
科研通AI5应助大利采纳,获得10
12秒前
12秒前
12秒前
12秒前
干净初彤发布了新的文献求助10
13秒前
13秒前
嘻嘻嘻完成签到,获得积分10
13秒前
上官若男应助就叫小王吧采纳,获得10
13秒前
med1640发布了新的文献求助10
16秒前
mixmix发布了新的文献求助10
16秒前
17秒前
dx完成签到,获得积分10
18秒前
18秒前
lance发布了新的文献求助10
19秒前
CMM完成签到,获得积分20
20秒前
YY发布了新的文献求助20
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073149
关于积分的说明 9129737
捐赠科研通 2764836
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009