Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery

相似性(几何) 虚拟筛选 药物发现 计算机科学 化学信息学 代表(政治) 人工智能 生物系统 数据挖掘 模式识别(心理学) 计算生物学 化学 生物信息学 计算化学 生物 图像(数学) 政治 政治学 法学
作者
Ashutosh Kumar,Kam Y. J. Zhang
出处
期刊:Frontiers in Chemistry [Frontiers Media SA]
卷期号:6 被引量:165
标识
DOI:10.3389/fchem.2018.00315
摘要

Molecular similarity is a key concept in drug discovery. It is based on the assumption that structurally similar molecules frequently have similar properties. Assessment of similarity between small molecules has been highly effective in the discovery and development of various drugs. Especially, two-dimensional (2D) similarity approaches have been quite popular due to their simplicity, accuracy and efficiency. Recently, the focus has been shifted towards the development of methods involving the representation and comparison of three-dimensional (3D) conformation of small molecules. Among the 3D similarity methods, evaluation of shape similarity is now gaining attention for its application not only in virtual screening but also in molecular target prediction, drug repurposing and scaffold hopping. A wide range of methods have been developed to describe molecular shape and to determine the shape similarity between small molecules. The most widely used methods include atom distance-based methods, surface-based approaches such as spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based representations. Several of these methods demonstrated excellent virtual screening performance not only retrospectively but also prospectively. In addition to methods assessing the similarity between small molecules, shape similarity approaches have been developed to compare shapes of protein structures and binding pockets. Additionally, shape comparisons between atomic models and 3D density maps allowed the fitting of atomic models into cryo-electron microscopy maps. This review aims to summarize the methodological advances in shape similarity assessment highlighting advantages, disadvantages and their application in drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
DTS发布了新的文献求助10
2秒前
2秒前
1851611453完成签到 ,获得积分10
3秒前
刘丰铭发布了新的文献求助10
3秒前
SciGPT应助jhonnyhuang采纳,获得10
3秒前
3秒前
5秒前
sunshine完成签到,获得积分10
5秒前
风清扬发布了新的文献求助10
5秒前
科研通AI6应助结实的栾采纳,获得10
5秒前
AskNature完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
13完成签到,获得积分20
6秒前
7秒前
7秒前
358489228发布了新的文献求助10
7秒前
Xiao完成签到,获得积分10
7秒前
Katherine完成签到 ,获得积分10
8秒前
Akim应助细心的飞柏采纳,获得10
8秒前
8秒前
默默发布了新的文献求助10
8秒前
9秒前
酷波er应助DTS采纳,获得10
9秒前
lixue发布了新的文献求助10
10秒前
10秒前
游大侠完成签到,获得积分10
10秒前
岑岑完成签到 ,获得积分10
10秒前
虎啊虎啊发布了新的文献求助10
11秒前
11秒前
Sandewna完成签到,获得积分20
11秒前
科研通AI6应助航迹云采纳,获得10
12秒前
标致书易完成签到,获得积分10
12秒前
13秒前
13秒前
dyw发布了新的文献求助10
14秒前
wen发布了新的文献求助10
14秒前
ZQH发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802