Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery

相似性(几何) 虚拟筛选 药物发现 计算机科学 化学信息学 代表(政治) 人工智能 生物系统 数据挖掘 模式识别(心理学) 计算生物学 化学 生物信息学 计算化学 生物 图像(数学) 政治 政治学 法学
作者
Ashutosh Kumar,Kam Y. J. Zhang
出处
期刊:Frontiers in Chemistry [Frontiers Media SA]
卷期号:6 被引量:165
标识
DOI:10.3389/fchem.2018.00315
摘要

Molecular similarity is a key concept in drug discovery. It is based on the assumption that structurally similar molecules frequently have similar properties. Assessment of similarity between small molecules has been highly effective in the discovery and development of various drugs. Especially, two-dimensional (2D) similarity approaches have been quite popular due to their simplicity, accuracy and efficiency. Recently, the focus has been shifted towards the development of methods involving the representation and comparison of three-dimensional (3D) conformation of small molecules. Among the 3D similarity methods, evaluation of shape similarity is now gaining attention for its application not only in virtual screening but also in molecular target prediction, drug repurposing and scaffold hopping. A wide range of methods have been developed to describe molecular shape and to determine the shape similarity between small molecules. The most widely used methods include atom distance-based methods, surface-based approaches such as spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based representations. Several of these methods demonstrated excellent virtual screening performance not only retrospectively but also prospectively. In addition to methods assessing the similarity between small molecules, shape similarity approaches have been developed to compare shapes of protein structures and binding pockets. Additionally, shape comparisons between atomic models and 3D density maps allowed the fitting of atomic models into cryo-electron microscopy maps. This review aims to summarize the methodological advances in shape similarity assessment highlighting advantages, disadvantages and their application in drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳哈密瓜完成签到,获得积分10
刚刚
刚刚
luanzh完成签到,获得积分10
刚刚
PZ完成签到,获得积分10
刚刚
xiaoD完成签到 ,获得积分10
刚刚
1秒前
1秒前
2秒前
sntyc完成签到 ,获得积分10
2秒前
Ava应助于林渤采纳,获得10
2秒前
2秒前
小汪快跑发布了新的文献求助10
3秒前
海绵宝宝完成签到,获得积分10
3秒前
Maestro_S完成签到,获得积分0
3秒前
可乐完成签到,获得积分20
3秒前
可爱的梦柏完成签到,获得积分10
3秒前
4秒前
困困发布了新的文献求助10
4秒前
机灵水卉发布了新的文献求助10
4秒前
4秒前
xiaochenxiaochen完成签到,获得积分10
4秒前
砰砰彭完成签到,获得积分10
4秒前
4秒前
lu完成签到 ,获得积分10
5秒前
pw完成签到 ,获得积分10
5秒前
cyy1226发布了新的文献求助10
5秒前
唠叨的夏烟完成签到 ,获得积分10
5秒前
wanci应助四月一日采纳,获得10
6秒前
Young发布了新的文献求助10
6秒前
有魅力的猫咪完成签到,获得积分10
6秒前
zwy完成签到,获得积分10
6秒前
无情的问枫完成签到 ,获得积分10
6秒前
LSY完成签到 ,获得积分10
7秒前
Lucas应助苏silence采纳,获得10
7秒前
友好雅山发布了新的文献求助10
7秒前
hushan53发布了新的文献求助10
7秒前
从容的完成签到 ,获得积分10
8秒前
云悠水澈完成签到,获得积分10
8秒前
顺利毕业完成签到,获得积分10
8秒前
炸鸡发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997