Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery

相似性(几何) 虚拟筛选 药物发现 计算机科学 化学信息学 代表(政治) 人工智能 生物系统 数据挖掘 模式识别(心理学) 计算生物学 化学 生物信息学 计算化学 生物 图像(数学) 政治 政治学 法学
作者
Ashutosh Kumar,Kam Y. J. Zhang
出处
期刊:Frontiers in Chemistry [Frontiers Media SA]
卷期号:6 被引量:165
标识
DOI:10.3389/fchem.2018.00315
摘要

Molecular similarity is a key concept in drug discovery. It is based on the assumption that structurally similar molecules frequently have similar properties. Assessment of similarity between small molecules has been highly effective in the discovery and development of various drugs. Especially, two-dimensional (2D) similarity approaches have been quite popular due to their simplicity, accuracy and efficiency. Recently, the focus has been shifted towards the development of methods involving the representation and comparison of three-dimensional (3D) conformation of small molecules. Among the 3D similarity methods, evaluation of shape similarity is now gaining attention for its application not only in virtual screening but also in molecular target prediction, drug repurposing and scaffold hopping. A wide range of methods have been developed to describe molecular shape and to determine the shape similarity between small molecules. The most widely used methods include atom distance-based methods, surface-based approaches such as spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based representations. Several of these methods demonstrated excellent virtual screening performance not only retrospectively but also prospectively. In addition to methods assessing the similarity between small molecules, shape similarity approaches have been developed to compare shapes of protein structures and binding pockets. Additionally, shape comparisons between atomic models and 3D density maps allowed the fitting of atomic models into cryo-electron microscopy maps. This review aims to summarize the methodological advances in shape similarity assessment highlighting advantages, disadvantages and their application in drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助研友_8QxayZ采纳,获得10
刚刚
111111关注了科研通微信公众号
刚刚
小林神发布了新的文献求助30
1秒前
1秒前
1秒前
csh_uyu完成签到,获得积分20
1秒前
2秒前
enterdawn完成签到,获得积分10
2秒前
开庆完成签到,获得积分10
2秒前
忧郁绫发布了新的文献求助10
3秒前
WUWEI完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
无名应助科研采纳,获得20
4秒前
小海王发布了新的文献求助10
4秒前
4秒前
今后应助杨羊羊采纳,获得10
5秒前
年轻的钢笔完成签到 ,获得积分10
5秒前
CNS冲应助charint采纳,获得50
6秒前
6秒前
6秒前
研友_VZG7GZ应助曾经的贞采纳,获得10
6秒前
zhtgang完成签到,获得积分10
7秒前
匿名完成签到,获得积分10
7秒前
兴奋孤丝完成签到,获得积分10
7秒前
子偕完成签到,获得积分10
7秒前
7秒前
aabot完成签到,获得积分10
7秒前
科研通AI2S应助TT大美女采纳,获得10
8秒前
大壮完成签到,获得积分10
8秒前
chigga发布了新的文献求助10
8秒前
能干梦芝完成签到,获得积分10
8秒前
wdl完成签到 ,获得积分10
8秒前
8秒前
大模型应助汤襄采纳,获得10
9秒前
灼灼完成签到,获得积分10
9秒前
和谐碧琴完成签到,获得积分10
9秒前
沐黎完成签到 ,获得积分10
10秒前
饱满的新之完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774034
求助须知:如何正确求助?哪些是违规求助? 5615602
关于积分的说明 15434217
捐赠科研通 4906509
什么是DOI,文献DOI怎么找? 2640270
邀请新用户注册赠送积分活动 1588076
关于科研通互助平台的介绍 1543114