Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery

相似性(几何) 虚拟筛选 药物发现 计算机科学 化学信息学 代表(政治) 人工智能 生物系统 数据挖掘 模式识别(心理学) 计算生物学 化学 生物信息学 计算化学 生物 图像(数学) 政治 政治学 法学
作者
Ashutosh Kumar,Kam Y. J. Zhang
出处
期刊:Frontiers in Chemistry [Frontiers Media]
卷期号:6 被引量:165
标识
DOI:10.3389/fchem.2018.00315
摘要

Molecular similarity is a key concept in drug discovery. It is based on the assumption that structurally similar molecules frequently have similar properties. Assessment of similarity between small molecules has been highly effective in the discovery and development of various drugs. Especially, two-dimensional (2D) similarity approaches have been quite popular due to their simplicity, accuracy and efficiency. Recently, the focus has been shifted towards the development of methods involving the representation and comparison of three-dimensional (3D) conformation of small molecules. Among the 3D similarity methods, evaluation of shape similarity is now gaining attention for its application not only in virtual screening but also in molecular target prediction, drug repurposing and scaffold hopping. A wide range of methods have been developed to describe molecular shape and to determine the shape similarity between small molecules. The most widely used methods include atom distance-based methods, surface-based approaches such as spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based representations. Several of these methods demonstrated excellent virtual screening performance not only retrospectively but also prospectively. In addition to methods assessing the similarity between small molecules, shape similarity approaches have been developed to compare shapes of protein structures and binding pockets. Additionally, shape comparisons between atomic models and 3D density maps allowed the fitting of atomic models into cryo-electron microscopy maps. This review aims to summarize the methodological advances in shape similarity assessment highlighting advantages, disadvantages and their application in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛马完成签到 ,获得积分10
4秒前
跳跃的鹏飞完成签到 ,获得积分10
5秒前
tengyi完成签到 ,获得积分10
8秒前
852应助HM采纳,获得10
9秒前
1002SHIB完成签到,获得积分10
21秒前
nihaolaojiu完成签到,获得积分10
21秒前
sheetung完成签到,获得积分10
22秒前
22秒前
麦田麦兜完成签到,获得积分10
22秒前
C.Cat完成签到,获得积分10
24秒前
27秒前
33秒前
ZZICU完成签到,获得积分10
49秒前
jason完成签到 ,获得积分10
59秒前
1分钟前
小公牛完成签到 ,获得积分10
1分钟前
小杨完成签到,获得积分10
1分钟前
1分钟前
善良的剑通完成签到 ,获得积分10
1分钟前
1分钟前
喜悦的香之完成签到 ,获得积分10
1分钟前
家迎松完成签到,获得积分10
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
帅气的沧海完成签到 ,获得积分10
1分钟前
bensonyang1013完成签到 ,获得积分10
1分钟前
禾中丨小骨完成签到 ,获得积分10
1分钟前
单小芫完成签到 ,获得积分10
1分钟前
jintian完成签到 ,获得积分10
2分钟前
陈补天完成签到 ,获得积分10
2分钟前
2分钟前
HM发布了新的文献求助10
2分钟前
lr完成签到 ,获得积分10
2分钟前
搬砖的化学男完成签到 ,获得积分0
2分钟前
笨鸟先飞完成签到 ,获得积分10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
来自三百完成签到,获得积分10
2分钟前
张北海应助简单采纳,获得20
2分钟前
apckkk完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3996002
求助须知:如何正确求助?哪些是违规求助? 3535669
关于积分的说明 11267397
捐赠科研通 3275275
什么是DOI,文献DOI怎么找? 1806560
邀请新用户注册赠送积分活动 883378
科研通“疑难数据库(出版商)”最低求助积分说明 809785