Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery

相似性(几何) 虚拟筛选 药物发现 计算机科学 化学信息学 代表(政治) 人工智能 生物系统 数据挖掘 模式识别(心理学) 计算生物学 化学 生物信息学 计算化学 生物 图像(数学) 政治 政治学 法学
作者
Ashutosh Kumar,Kam Y. J. Zhang
出处
期刊:Frontiers in Chemistry [Frontiers Media SA]
卷期号:6 被引量:165
标识
DOI:10.3389/fchem.2018.00315
摘要

Molecular similarity is a key concept in drug discovery. It is based on the assumption that structurally similar molecules frequently have similar properties. Assessment of similarity between small molecules has been highly effective in the discovery and development of various drugs. Especially, two-dimensional (2D) similarity approaches have been quite popular due to their simplicity, accuracy and efficiency. Recently, the focus has been shifted towards the development of methods involving the representation and comparison of three-dimensional (3D) conformation of small molecules. Among the 3D similarity methods, evaluation of shape similarity is now gaining attention for its application not only in virtual screening but also in molecular target prediction, drug repurposing and scaffold hopping. A wide range of methods have been developed to describe molecular shape and to determine the shape similarity between small molecules. The most widely used methods include atom distance-based methods, surface-based approaches such as spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based representations. Several of these methods demonstrated excellent virtual screening performance not only retrospectively but also prospectively. In addition to methods assessing the similarity between small molecules, shape similarity approaches have been developed to compare shapes of protein structures and binding pockets. Additionally, shape comparisons between atomic models and 3D density maps allowed the fitting of atomic models into cryo-electron microscopy maps. This review aims to summarize the methodological advances in shape similarity assessment highlighting advantages, disadvantages and their application in drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
1秒前
李恺强完成签到,获得积分10
1秒前
科研通AI6应助skywet采纳,获得80
1秒前
木一完成签到,获得积分10
1秒前
典希子发布了新的文献求助30
1秒前
2秒前
酷波zai发布了新的文献求助10
2秒前
盛清让发布了新的文献求助10
2秒前
坚强的之双完成签到,获得积分10
3秒前
华仔应助jojo采纳,获得10
3秒前
3秒前
5秒前
笨笨的晓兰完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
自然的曲奇完成签到 ,获得积分10
6秒前
6秒前
过时的不评完成签到,获得积分10
7秒前
qc发布了新的文献求助50
8秒前
regene发布了新的文献求助10
9秒前
邓历鑫完成签到,获得积分10
9秒前
魔幻的尔曼关注了科研通微信公众号
9秒前
9秒前
今后应助会飞的猪qq采纳,获得10
10秒前
nice瑞琪儿完成签到 ,获得积分20
10秒前
浮游应助旁边有堵墙采纳,获得10
10秒前
大模型应助dd采纳,获得10
10秒前
浮游应助旁边有堵墙采纳,获得10
10秒前
桐桐应助旁边有堵墙采纳,获得10
10秒前
11秒前
科研欢完成签到 ,获得积分10
11秒前
12秒前
激昂的以南完成签到 ,获得积分10
12秒前
我不完成签到,获得积分10
12秒前
JUGG发布了新的文献求助10
14秒前
lalala完成签到,获得积分10
15秒前
16秒前
orixero应助xxx采纳,获得10
16秒前
wmqlu完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666210
求助须知:如何正确求助?哪些是违规求助? 4879851
关于积分的说明 15116421
捐赠科研通 4825314
什么是DOI,文献DOI怎么找? 2583219
邀请新用户注册赠送积分活动 1537340
关于科研通互助平台的介绍 1495578