Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery

相似性(几何) 虚拟筛选 药物发现 计算机科学 化学信息学 代表(政治) 人工智能 生物系统 数据挖掘 模式识别(心理学) 计算生物学 化学 生物信息学 计算化学 生物 图像(数学) 政治 政治学 法学
作者
Ashutosh Kumar,Kam Y. J. Zhang
出处
期刊:Frontiers in Chemistry [Frontiers Media SA]
卷期号:6 被引量:165
标识
DOI:10.3389/fchem.2018.00315
摘要

Molecular similarity is a key concept in drug discovery. It is based on the assumption that structurally similar molecules frequently have similar properties. Assessment of similarity between small molecules has been highly effective in the discovery and development of various drugs. Especially, two-dimensional (2D) similarity approaches have been quite popular due to their simplicity, accuracy and efficiency. Recently, the focus has been shifted towards the development of methods involving the representation and comparison of three-dimensional (3D) conformation of small molecules. Among the 3D similarity methods, evaluation of shape similarity is now gaining attention for its application not only in virtual screening but also in molecular target prediction, drug repurposing and scaffold hopping. A wide range of methods have been developed to describe molecular shape and to determine the shape similarity between small molecules. The most widely used methods include atom distance-based methods, surface-based approaches such as spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based representations. Several of these methods demonstrated excellent virtual screening performance not only retrospectively but also prospectively. In addition to methods assessing the similarity between small molecules, shape similarity approaches have been developed to compare shapes of protein structures and binding pockets. Additionally, shape comparisons between atomic models and 3D density maps allowed the fitting of atomic models into cryo-electron microscopy maps. This review aims to summarize the methodological advances in shape similarity assessment highlighting advantages, disadvantages and their application in drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助XXQ采纳,获得10
刚刚
1秒前
2秒前
小青椒应助刚刚采纳,获得10
2秒前
2秒前
2秒前
yan完成签到,获得积分10
2秒前
1101592875应助一路硕博采纳,获得10
3秒前
棋士应助一路硕博采纳,获得10
3秒前
ZZQ完成签到 ,获得积分10
3秒前
Jared应助一路硕博采纳,获得20
3秒前
无极微光应助一路硕博采纳,获得20
3秒前
共享精神应助麦当当薯条采纳,获得10
3秒前
YH关闭了YH文献求助
3秒前
无情南琴发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
打打应助文静采纳,获得10
4秒前
wjy发布了新的文献求助10
5秒前
子涵高完成签到,获得积分20
5秒前
5秒前
LINHY应助研友_8R5zBZ采纳,获得20
5秒前
6秒前
lijiao发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
小二郎应助hyominhsu采纳,获得10
7秒前
wanci应助无问采纳,获得10
7秒前
CKK应助maybe豪采纳,获得10
7秒前
yxy840325发布了新的文献求助10
7秒前
Jackson完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
Lgaga完成签到,获得积分10
9秒前
暗夜浮尘发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791