作者
Xiushi Zhou,Renping Wang,Tian Zhang,Fei Liu,Wei Zhang,Guili Wang,Guorong Gu,Qinqi Han,Demin Xu,Chenling Yao,Daqiao Guo,Weiguo Fu,Yunpeng Qi,Lixin Wang
摘要
ObjectivesAcute aortic dissection (AAD) is a severe clinical emergency with a high mortality, and is easily misdiagnosed in its early stage. This study aimed at discovering serum metabolomic markers with the potential to diagnose AAD and distinguish between two subtypes of AAD.MethodsThirty-five patients with AAD, including 20 with Stanford type A and 15 with Stanford type B were enrolled in this study, together with 20 healthy controls. All patients with AAD were admitted within 72 h of onset. Serum metabolomics profiles were determined by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and the data were analysed by principal component analysis and partial least squares discriminant analysis.ResultsA total of 17 metabolites differing between the control and AAD groups were finally screened and identified as lysophosphatidylcholines (LPC) and sphingolipids including sphinganine, phytosphingosine, sphingomyelin, and ceramide. Compared with those in the healthy control group, LPC levels were significantly lower in both the Stanford type A and type B AAD groups. Interestingly, sphingolipids, including sphinganine, phytosphingosine, and ceramide, were remarkably reduced in the Stanford type A AAD group, but not in the Stanford type B AAD group. Subgroup analysis showed that the changes in LPC and sphingolipid levels were unrelated to hypertension or gender.ConclusionsThe present results indicate that LPCs and sphingolipids are significantly altered in patients with AAD, and several sphingolipids, such as sphinganine, phytosphingosine, and ceramide, were dramatically decreased in patients with Stanford type A AAD. A combination of these two families of metabolites could serve as a potential biomarker for the diagnosis of AAD and distinguishing between Stanford type A and Stanford type B. Acute aortic dissection (AAD) is a severe clinical emergency with a high mortality, and is easily misdiagnosed in its early stage. This study aimed at discovering serum metabolomic markers with the potential to diagnose AAD and distinguish between two subtypes of AAD. Thirty-five patients with AAD, including 20 with Stanford type A and 15 with Stanford type B were enrolled in this study, together with 20 healthy controls. All patients with AAD were admitted within 72 h of onset. Serum metabolomics profiles were determined by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and the data were analysed by principal component analysis and partial least squares discriminant analysis. A total of 17 metabolites differing between the control and AAD groups were finally screened and identified as lysophosphatidylcholines (LPC) and sphingolipids including sphinganine, phytosphingosine, sphingomyelin, and ceramide. Compared with those in the healthy control group, LPC levels were significantly lower in both the Stanford type A and type B AAD groups. Interestingly, sphingolipids, including sphinganine, phytosphingosine, and ceramide, were remarkably reduced in the Stanford type A AAD group, but not in the Stanford type B AAD group. Subgroup analysis showed that the changes in LPC and sphingolipid levels were unrelated to hypertension or gender. The present results indicate that LPCs and sphingolipids are significantly altered in patients with AAD, and several sphingolipids, such as sphinganine, phytosphingosine, and ceramide, were dramatically decreased in patients with Stanford type A AAD. A combination of these two families of metabolites could serve as a potential biomarker for the diagnosis of AAD and distinguishing between Stanford type A and Stanford type B.